12+
Квантовый оптоэлектронный генератор

Бесплатный фрагмент - Квантовый оптоэлектронный генератор

Глава 1. Принципы построения

Введите сумму не менее null ₽, если хотите поддержать автора, или скачайте книгу бесплатно.Подробнее

Объем: 122 бумажных стр.

Формат: epub, fb2, pdfRead, mobi

Подробнее

Выражаю искреннюю благодарность моему учителю Ильину Юрию Борисовичу за ценные советы и дискуссии



По диссертации

на соискание ученой степени доктора технических наук

Книга содержит 402 с., 137 рис., 4 табл., 172 источников.

Ключевые слова: оптоэлектронный генератор, генератор, автогенератор, лазер, лазерный диод, оптическое волокно, резонатор, фазовый шум, нанотехнология, технические характеристики, методы управления, частота.

Диссертация посвящена теоретическому и экспериментальному исследованию оптоэлектронного автогенератора (ОЭГ) с волоконно-оптической линией задержки (ВОЛЗ) в кольце положительной обратной связи. Спецификой проведенных в настоящей работе исследований оптоэлектронного генератора ОЭГ является использование в качестве модулированного источника света квантоворазмерного лазерного диода (КЛД). Квантоворазмерный лазерный диод является современным продуктом нанотехнологии, а в оптоэлектронном генераторе он является ключевым элементом. Впервые в настоящей работе оптоэлектронный генератор ОЭГ рассмотрен, как автоколебательная система, в которой развиваются два колебательных процесса в различных диапазонах: в оптическом диапазоне и в радиочастотном диапазоне. Построена ранее неизвестная теоретическая модель оптоэлектронного генератора ОАГ в форме системы нелинейных дифференциальных уравнений в обыкновенных производных с запаздывающим аргументом ВОЛЗ. Разработаны, реализованы и исследованы действующие экспериментальные образцы ОЭГ с КЛД и ВОЛЗ в СВЧ диапазоне. Рассмотрены перспективные схемы применения предложенные автором малошумящих ОЭГ в системах связи, бортовых радиолокационных станциях беспилотных летательных аппаратов (БПЛА), в волоконно-оптических датчиках, в волоконно-оптических линиях связи и различных измерительных комплексах.

Введение

В настоящее время актуальной научно-технической задачей является разработка компактных малошумящих стабилизированных по частоте радиочастотных генераторов [1,2], работающих в диапазоне от 1 до 100 ГГц в интегральном или гибридном твердотельном исполнении. Подобные устройства формирования колебаний необходимы при разработке мобильной связи, систем авиационной и спутниковой связи, систем передачи информации для беспилотных летательных аппаратов (БПЛА), радиолокационных и оптических когерентных систем, антенно-фидерных трактов, высокоточной измерительной аппаратуры.

Имеющиеся в настоящее время известные традиционные СВЧ генераторы являются для ряда применений неприемлемыми. Традиционные генераторы с кварцевым резонатором и генераторы на поверхностных акустических волнах (ПАВ) с умножением генерируемой частоты не дают возможности получить требуемый уровень спектральной плотности мощности (СПМ) фазового шума (ФШ) за счет многократного увеличения фазового шума при умножении частоты в СВЧ и КВЧ генераторных схемах. Такие известные генераторы не имеют требуемый уровень кратковременной нестабильности частоты в диапазоне частот 1… 100 ГГц.

Автогенераторы с диэлектрическим резонатором на керамических сплавах имеют явные ограничения по уровню фазовых шумов. За счет относительно низкой добротности такого резонатора, равной примерно 1000 (на частоте генерации 10 ГГц), типичный уровень фазовых шумов коммерчески доступных отечественных и зарубежных генераторов не превышает по модулю, как правило, минус 90…115 дБм/Гц при частотной отстройке 1 кГц от номинальной частоты генерации в диапазоне от 8 ГГц до 20 ГГц.

СВЧ автогенераторы со стабилизацией частоты твердотельным лейкосапфировым диэлектрическим резонатором [3] имеют на сегодняшний день самый низкий зарегистрированный уровень фазового шума — 167 дБм/Гц при отстройках от несущей на 1кГц …10 кГц при номинальной частоте порядка 10 ГГц. Рабочий диапазон частот таких генераторов составляет от 6 ГГц до 35 ГГц и имеет, как правило, дискретный диапазон частотной перестройки.

Лейкосапфировый резонатор такого генератора имеет относительно большие габаритные размеры (диаметр 30…100 мм) и вес (150…400 г). За счет больших габаритов и веса резонатора в таких генераторах частота генерации сильно зависит от механических нагрузок. Серьезным недостатком генератора с лейкосапфировым резонатором является то, что в таких генераторах, за счет относительно высокой зависимости диэлектрической проницаемости материала от температуры (10—4 1/град), системы термостабилизации частоты являются сложными и дорогими.

Одним из альтернативных способов создания надежных компактных и малых по стоимости малошумящих автогенераторов в области частот 1…100 ГГц является применение в ОЭГ стабилизированной малошумящей волоконно-оптической линии задержки (ВОЛЗ) на основе быстродействующих кванторазмерного лазерного диода и фотодиода, а также за счет специальных низкодисперсионных оптических волокон. Данные ВОЛЗ обладают большим запаздыванием для гармонических СВЧ колебаний. Время задержки в таких ВОЛЗ составляет от 1 нс до 50 мкс (при полосе передаваемых частот до 100 ГГц!). При этом, в таких ВОЛЗ потери мощности за счет рассеяния и оптоэлектронного преобразования составляют 10…18 дБ и более в СВЧ и КВЧ диапазонах.

В лучших образцах СВЧ оптоэлектронного генератора, имеющего в кольце обратной связи подобную ВОЛЗ, уже достигнута низкая спектральная плотность мощности фазовых шумов равная -153дБн/Гц при частотных отстройках по частоте на 1кГц ÷ 10 кГц от несущей 10 ГГц [73,94, 97]. Кратковременная нестабильность частоты такого ОЭГ составляет примерно 10—10 [73]. Сверхнизкий фазовый шум такого ОЭГ достигается за счет создания на базе ВОЛЗ высокодобротного оптоэлектронного резонатора «бегущей волны» с нагруженной эквивалентной добротностью Q = (0,2… 0,8) ·10(в диапазоне частот 1…70 ГГц). В состав такой ВОЛЗ входят последовательно соединённые квантоворазмерный лазерный диод (КЛД) с внешним электрооптическим модулятором Маха-Цендера (или КЛД с прямой модуляцией), волоконно-оптическая система (ВОС), состоящая из одного или нескольких оптических волокон и фотодетектор (ФД). Подробное описание конструкции ОЭГ будет дано в главе 1.

В ОЭГ с КЛД и компактными ВОЛЗ возможно получить низкую относительную кратковременную и долговременную нестабильности частоты генерируемых СВЧ автоколебаний порядка 10—8…10—10. В таком ОЭГ управление частотой генерации можно производить оптическими и электронными методами. ОЭГ и перспективно использовать их в радиолокационных станциях и оптических локаторах нового поколения, в сверхширокополосных регенерируемых ВОЛЗ в качестве формирователей сверхкоротких оптических импульсов и радиоимпульсных сигналов длительностью 0,01 ÷ 1 пс с малым «джиттером» (случайным уходом переднего фронта импульса), а также в ВОЛС для передачи информации в системах с повышенной конфиденциальностью с использованием маскирующих помех [81,82].

Однако данный тип перспективных ОЭГ недостаточно теоретически и экспериментально изучен. Не объяснены главные причины сверхмалого значения фазового шума радиочастотного колебания генерации при использовании в ОЭГ ВОЛЗ прямой и внешней схем модуляции КЛД. В России до 2004 года не было создано ни одного действующего лабораторного образца экспериментального макета ОЭГ в диапазоне частот 2…12 ГГц и выше. За рубежом в начале 2000-х годов с появлением коммерческих СВЧ электрооптических модуляторов появились экспериментальные работы Малеки и Стива Яо (Калтех) и др. авторов по исследованию ОЭГ с внешней модуляцией с использованием электрооптического модулятора Маха-Цендера. В этих работах, наряду с успешными экспериментальными результатами по СПМ ФШ, не была все-таки построена теория ОЭГ с флуктуациями. Не было показано, как влияет фазовый шум лазера, определяемый его спонтанными шумами, на радиочастотный СПМ ФШ ОЭГ в целом. Не обсуждается упоминание о роли фазового шума лазера, входящего в состав ОЭГ в работах зарубежных авторов [61,69,70,74,75,94]. Указанные обстоятельства явились одним из стимулов для подготовки и проведения исследований данной диссертации в период с 2005 по 2014 гг.

Имеющиеся работы (опубликованные книги, статьи и материалы докладов) по исследованию ОЭГ [52—64] не дают сразу возможности определить основные свойства ОЭГ в СВЧ диапазоне, методы управления частотой, выделить и проанализировать факторы, влияющие на нестабильность частоты генерации и фазовый шум ОЭГ. Одним из достоинство настоящей работы является, по мнению автора, построение физической и инженерной теории оптоэлектронного генератора с учетом флуктуаций и объяснение влияния фазовых шумов спонтанного оптического излучения лазера на процесс формирования радиочастотных результирующих фазовых шумов ОЭГ при целенаправленной генерации в радиочастотном диапазоне.

Отметим, что ОЭГ относится, с точки зрения классической теории колебаний, к генераторам с запаздывающей обратной связью (ЗОС) [4—31], [32—45]. Теоретически изученными автогенераторами с ЗОС и близкими по своей схеме построения к ОЭГ, являются автогенераторы с линиями задержки на поверхностных акустических волнах (АГ ПАВ) [19—25, 40,41]. Эти исследовании создали основу для теоретических исследований нового класса автогенераторов (АГ) — ОЭГ ВОЛЗ, исследованиям которого посвящена данная диссертационная работа.

Интенсивные исследования в 70-х — 80-х годах прошлого века волоконно-оптических линий связи (ВОЛС) и волоконно-оптических волокон с низкими оптическими потерями [42–44] дали импульс к началу использования ВОЛЗ в автоколебательных системах [45—52], [46—52].

В последние десятилетия были выполнены работы по экспериментальному и теоретическому исследованию современных быстродействующих оптоэлектронных компонентов: лазеров, электрооптических модуляторов, фотодиодов, а также оптоэлектронных и волоконно-оптических систем с быстродействием 0,01 — 100 пс, с полосами частот модуляции до (18 ÷ 200) ГГц [53—106]. Такие работы дали импульс для проведения исследований оптоэлектронных генераторов СВЧ и КВЧ диапазонов [57,61,63—66,73]. Работы по разработке и исследованию компонентов, используемых в ОАГ, активно проводятся в России [114—134]. В настоящее время в России группой Курносова В. Д. (ФГУП ПОЛЮС, Москва) ведутся исследования и разработка современных отечественных квантоворазмерных лазерных диодов (КЛД) и фотодиодов, позволяющих осуществлять модуляцию и демодуляцию на модулирующих частотах до 12 ГГц [102—103]. С появлением подобных сверхширокополосных отечественных КЛД стала возможной практическая разработка ОАГ ВОЛЗ в диапазоне до 12 ГГц [115—120,131,132]. Дальнейшие перспективы разработки ОАГ, работающих в СВЧ и КВЧ диапазонах, связаны с современными разработками оптоэлектронных устройств и фотонных нанотехнологий [135]. В последнее время в России появились работы по экспериментальному исследованию оптоэлектронного генератора группы проф. Белкина М. Е., что говорит об актуальности проблемы создания малошумящего оптоэлектронного генератора с ВОЛЗ [111].

Из зарубежных ученых в области экспериментальных исследований оптоэлектронного генератора ОАГ необходимо отметить публикации таких исследователей, как Наказава М. (Япония, 1982г.), Ярив А. (Калтех,1983г.), Малеки Л. (Калтех,1996г.), Стив Яо (Калтех,1996г.), Шумахер (Израиль,2005), Чен Ли (Республика Корея, 2008). Пионерскими теоретическими и экспериментальными исследованиями представляются работы отечественной российской «квантовой» группы МЭИ в составе Ильина Ю. Б., Константинова В. Н. и Борцова А. А., которые были выполнены в 1981—1993 гг. под научным руководством проф. д.ф.-м. н. Григорьянца В. В. (МЭИ и ИРЭ РАН) [51,52,57,114—122]. В этих работах проведён анализ ОЭГ с ВОЛЗ, который в этих работах назывался лазерным автогенератором с ВОЛЗ или ЛАГ ВОЛЗ. Анализ оптоэлектронного генератора был проведен в предположении малого запаса по самовозбуждению и получены обыкновенные дифференциальные уравнения автономного ОЭГ с одиночным оптическим волокном (ОВ) в ВОЛЗ и были сформулированы основные концепции построения ОЭГ, как стабилизированного автогенератора на основе протяженного оптического волокна (ОВ). Одним из принципиально новых утверждений этой российской квантовой группы (и актуальными на сегодня) являлось доказанное положение, что малошумящий ОАГ может работать без радиочастотного усилителя. Этой квантовой группой с непосредственным участием автора настоящей диссертации, были впервые проведены теоретические и экспериментальные исследования ОЭГ и опубликованы работы [51,52,57,114—122] об использовании в таком генераторе составных (на базе нескольких оптических волокон), дифференциальных ВОЛЗ и рециркулярных (нерекурсивных и рекурсивных) ВОЛЗ. Были разработаны новые способы управления частотой ОЭГ и доказано, что использование ВОЛЗ приводит к уменьшению кратковременной и долговременной нестабильности частоты ОЭГ [114—118].

На современном этапе ведутся интенсивные исследования за рубежом по созданию сверхкомпактного малошумящего генератора на базе ОЭГ с ВОЛЗ, предназначенного для бортового применения в малогабаритных БПЛА и других системах передачи информации. Построение сверхмалошумящих СВЧ автогенераторов на основе ОЭГ в различных областях техники, в вооружениях и военной специальной технике настоятельно требует ответа на многие вопросы. К ним можно отнести, в первую очередь, следующие. Какие должны быть в малошумящем ОЭГ по величине фазовые шумы КЛД? Какая должна быть в малошумящем ОЭГ по величине ширина спектральной линии и мощность КЛД? Какова взаимосвязь оптических фазовых шумов лазера и радиочастотных фазовых шумов ОАГ, какие способы управления частотой необходимо применять в ОЭГ с ВОЛЗ, как влияет температура оптического волокна ВОЛЗ на уходы частоты автоколебаний в ОЭГ, какова должна быть геометрическая длина оптического волокна и многие другие.

Имеющиеся к настоящему моменту перечисленные теоретические работы не отвечают на вопросы, касающиеся ОЭГ, так как в этих работах авторы ограничивались изучением модели ОЭГ в виде кольцевой автоколебательной системы с бездисперсионным звеном запаздывания в петле положительной обратной связи, роль которого в рамках этой модели выполняет ВОЛЗ. Лазер в такой модели не рассматривался как самостоятельный источник оптических колебаний со своими амплитудными и фазовыми шумами, а представлялся линейным идеальным пассивным элементом.

В настоящий момент отсутствует сравнение ОЭГ по техническим характеристикам с другими генераторами, не проанализированы основные достоинства такого генератора. Не проведено теоретическое и экспериментальное исследование схем ОЭГ с прямой и внешней модуляцией КЛД с учетом шумов лазера.

Выше сказанное позволяет следующим образом сформулировать цель данной работы.

Целью диссертационной работы является целенаправленный анализ и решение ряда теоретических и практических проблем, включая математическое моделирование и экспериментальное исследование, которые возникают при планомерном изучении новой научной проблемы: исследовании и создании на базе нового класса оптоэлектронных генераторов с квантоворазмерным лазерным диодом современного малошумящего компактного генератора с учетом шума спонтанного излучения КЛД и выработки рекомендаций к характеристикам элементов ОЭГ, а также разработка схем и методов проектирования ОЭГ с прямой и внешней модуляцией параметров выходного излучения. В соответствии со сформулированной целью в диссертации решаются следующие задачи:

— проведение аналитического обзора и сравнения ОЭГ по техническим характеристикам с другими малошумящими радиочастотными генераторами;

— теоретическое и экспериментальное исследование ОЭГ с учетом статических, динамических и шумовых характеристик лазера КЛД,

— построение математической модели ОЭГ в виде дифференциальных уравнений с обратной связью при учёте в ВОЛЗ лазера, как источника оптических колебаний,

— теоретическое исследование моделей для схем с прямой и внешней модуляцией для анализа стационарные режимов работы ОЭГ, переходных процессов, амплитудных и фазовых шумов в ОЭГ,

— теоретическое исследование влияние шума спонтанного излучения лазера КЛД на фазовый радиочастотный шум ОЭГ;

— разработка и изучение способов оптического и электронного управления частоты генерации, стационарных режимов работы ОЭГ;

— реализация и исследования экспериментальных образцов и экспериментальные исследования ОЭГ с ВОЛЗ, работающих в СВЧ и ВЧ диапазонах;

— теоретическое и экспериментальное исследование уходов частоты генерации ОЭГ от температуры оптического волокна в ВОЛЗ;

— влияние на долговременную нестабильность частоты изменений температуры оптического волокна;

— реализация и исследование разработанных экспериментальных образцов ОЭГ и экспериментальные исследования ОЭГ с ВОЛЗ, работающих в СВЧ и ВЧ диапазонах.

Методы исследования. Для решения поставленных задач в работе использованы общие аналитические и качественные методы теории колебаний применительно к решению и моделированию дифференциальных уравнений, полуклассическая теория лазеров, теория радиотехнических цепей и сигналов, теория флуктуаций в автоколебательных системах. Кроме того, применялся метод экспериментальных исследований на действующих макетах. Обработка результатов экспериментов велась методами математической статистики.

Порядок представления материала данной диссертационной работы является следующим:

1. Описание разработанной методической концепции исследования малошумящего ОЭГ ВОЛЗ на базе КЛД. Анализ результатов методов генерирования СВЧ колебаний с малыми шумами с использованием традиционных электронных генераторных схем и оптоэлектронных способов формирования СВЧ и КВЧ колебаний. Целью обзора является систематизация данных и выявление преимуществ ОЭГ с КЛД.

2. Описание и анализ различных теоретических моделей и методов изучения ОЭГ, которые наиболее эффективно решают поставленные задачи исследования. К теоретическим моделям относятся: во-первых, модель ОАГ на базе укороченных ДУ с дифференциальной ВОЛЗ. В данной модели, разработанной с учетом многолетнего опыта работы специалистов ведущей кафедры Формирования Колебаний и Сигналов МЭИ по широкому использованию методов нелинейной теории колебаний в радиоэлектронике, ВОЛЗ, состоящая из последовательно соединенных лазера КЛД, оптического волокна и фотодетектора представляется в виде линейного четырехполюсника с заданной передаточной характеристикой, а элементы, входящие в ВОЛЗ, являются линейными элементами с крутизной преобразования и описываются передаточными функциями. Во-вторых, модель на базе полуклассических уравнений КЛД с прямой амплитудной модуляцией, охваченного положительной обратной связью с использованием оптического волокна, фотодетектора, узкополосного радиочастотного фильтра и нелинейного усилителя. В-третьих, модель на базе полуклассических уравнений КЛД с внешней модуляцией оптического излучение электрооптическим модулятором Маха-Цендера.

ГЛАВА1. Наноструктурные оптоэлектронные генераторы (ОЭГ)

1.1. Принцип действия и функциональная схема ОЭГ

1.1.1. Оптоэлектронный генератор

(ОЭГ), схема которого показана на рис. 1.1,а является автоколебательной структурой с запаздывающей обратной связью, в котором волоконно-оптическая линия задержки (ВОЛЗ) образована последовательно включенными модулируемым источником света (МИС), волоконно-оптической системой (ВОС) и фотодетектором ФД. Модулированным источником света является квантоворазмерный лазерный диод (КЛД). КЛД, о котором подробно описано в главе 3, имеет за счет квантования энергетических зон в переходе, в несколько раз (чем традиционный мезаполосковый лазерный диод) большую выходную мощность, меньший на порядок пороговый уровень тока накачки, меньшие шумы, определяемые спонтанным излучением лазера и меньшую на порядок ширину линии генерации.

В схему ОЭГ, представленную на рис. 1.1,а входят последовательно замкнутые в кольцо МИС на базе КЛД, ВОС, содержащая одно или несколько оптических волокон, ФД, нелинейный широкополосный усилитель (НУ), узкополосный радиочастотный фильтр (Ф) и ответвитель (О) для вывода радиосигнала. При этом в настоящей диссертации подлежат анализу схемы ОЭГ, которые различаются по типу модуляции: 1) ОЭГ с прямой модуляцией излучения КЛД [151] и 2) ОЭГ с внешней модуляцией излучения КЛД электрооптическим модулятором Маха-Цендера (рис. 1.1,а). Схема ОЭГ с внешней модуляцией строится на базе электрооптического модулятора Маха-Цендера (МЦ) [145,172]. При этом в одном из двух каналов МЦ используется оптическая фазовая модуляция (ФМ). Также для модуляции оптического излучения в ОЭГ может быть использован акустооптический модулятор (АОМ) с применением частотной модуляции излучения лазера. Использование разных способов (прямой или внешней) оптической модуляции и её видов: амплитудной, фазовой или частотной (АМ, ФМ, ЧМ) зависит от назначения ОЭГ.

Рис.1.1. Функциональная схема ОЭГ с разными модулированными источниками света (МИС): ОЭГ с квантоворазмерным лазерным диодом (КЛД) с прямой модуляцией и ОЭГ с КЛД с внешнем электрооптическим модулятором;


Рис. 1.2. Спектры колебаний ОЭГ на оптическом и электрическом выходах
Рис.1.3. Вид спектра автоколебаний, генерируемых ОЭГ с КЛД в стационарном режиме одночастотной генерации на частоте 8,2 ГГц (время наблюдения 1 мс).

Например, в ОЭГ высокочастотного диапазона для систем измерения параметров оптического волокна, в частности, при исследовании температурных зависимостей оптического волокна, целесообразно применять лазерный диод или светодиод (СД) с низкочастотной внутренней модуляцией. В СВЧ ОЭГ, пригодных для использования в составе систем связи в качестве, например, малошумящих устройств формирования опорных колебаний с рабочими частотами 5 … 73 ГГц, целесообразно использовать КЛД с прямой и внешней модуляцией. В сверхмалошумящих автогенераторах СВЧ и КВЧ диапазона (8…30 ГГц) необходимо использовать КЛД с внешним модулятором Маха-Цендера.

КЛД представляет собой наноструктурный сверхширокополосный мезаполосковый инжекционный полупроводниковый лазерный диод с высокими выходными показателями: мощность излучения — 10…30 мВт, ширина полосы модуляции за счет использования фотонных технологий составляет 10…40 ГГц, крутизна преобразования оптической мощности от постоянного тока накачки составляет 1мВт/10мА. КЛД является наноструктурным элементом, так в его активной части формированы слои из полупроводникового материала, имеющие размеры волны де-Бройля примено 1…10нм. С колебательной точки зрения формирование таких слоев (или квантовых зон) позволяет для электронов, являющимися активными частицами в КЛД, устроить своеобразные автоколебательные системы (АКС) или резонаторы. В таких АКС электроны начинают совершать колебательные движения в результате которых зависимость коэффициента усиления от оптического частоты имеет резко выраженные резонансные пики.

Одной из главных особенностей ОЭГ по схеме рис.1.2 является наличие одновременно существующих двух автоколебательных процессов разного диапазона: оптического и радиочастотного. На схеме рис.1.2 в ОЭГ выделены в отдельные блоки — лазер и кольцо с оптоэлектронной частью, в которое входят замкнутые НУ, Ф, О и модулятор Маха-Цендера (МЦ).

Рис.1.4. Структурная схема ОЭГ: Лазер — КЛД, МЦ — электрооптический модулятор Маха-Цендера, ОУ — оптический усилитель, ВОС — волоконно-оптический система, ФД — фотодетектор, НУ — нелинейный усилитель, Ф –радиочастотный фильтр, О — ответвитель.


Рис. 1.5. Схема малошумящего лазерного ОЭГ с прямой амплитудной модуляцией (ПАМ) КЛД с двумя оптическими каналами (ВС1 и ВС2).

1.1.2. Методическая концепция и особенности исследования ОЭГ

Выделим главные составляющие принятой нами концепции исследования:

Предметом исследования являются колебательные процессы в схемах ОАГ (с внешней и прямой модуляцией (по схемам рис.1.1, 1.2, 1.3)), в своей основе содержащие фазовые и амплитудные принципы модуляции оптического излучения. ОАГ представляет двухдиапазонную автоколебательную систему (АКС), в которой одновременно формируются колебания в оптическом и радиочастотном диапазонах по своим законам.

При этом, в схемах ОЭГ радиочастота модуляции КЛД много больше относительной ширины спектральной линии лазерного излучения. Кроме этого, в ОАГ происходит оптоэлектронное преобразование на фотодетекторе, по крайней мере, двух оптических гармоник в низкочастотный фототок (или радиочастотное колебание) и имеет место гетеродинное фотодетектирование (или самогетеродинирование) при квазикогерентном колебании лазера. Исследуемые схемы ОЭГ (рис.1.1, 1.2, 1.3) с прямой и внешней модуляцией (а также с применением дополнительного подавления одной из трех оптических гармоник и с выравниванием амплитуд оставшихся двух гармоник) содержат в своей структуре исходную базу для применения корреляционного метода подавления фазового шума. В потенциале эти ОАГ обладают высокой степенью подавления фазового спонтанного шума лазера, электронных шумов фотодетектора и усилителя. Выдвижение и разработка данной идеи принадлежит автору диссертации [145]. Можно говорить, что в схемах ОЭГ (рис.1.1, 1.2, 1.3) реализуется (наряду с использованием протяженной кварцевой ВОЛЗ для стабилизации частоты генерации и подавления фазового шума) практический коррелятор. В этом случае режим работы ОЭГ подобен работе разностного генератора, в котором, благодаря генерации на двух частотах, происходит значительное снижение СПМ фазового шума.

Главными решаемыми задачами этой части исследования являются: установление влияния параметров КЛД (тока накачки, фазового шума) и оптического волокна (геометрической длины, показателя преломления, температурной зависимости показателя преломления и др.) на характеристики колебательного радиочастотного процесса ОЭГ, установление влияния шума лазера на шум ОЭГ.

Для математического моделирования лазерного излучения КЛД используется, в частности, известная полуклассическая теория лазера с учетом фазовых соотношений напряженности электрического поля. Это вызвано следующими обстоятельствами.

1.1.3. Полуклассическая теория лазера

(или полуклассическое приближение) с учетом фазовых соотношений составляет одну из методических основ настоящей диссертации. Это означает, что для описания взаимодействия электромагнитного поля (ЭМП) с активным веществом КЛД используют классические уравнения Максвелла, а свойства вещества описываются векторами поляризации и уровнем населенности носителей на верхнем энергетическом уровне. Далее показывается, что для полупроводникового КЛД три уравнения (для напряженности поля лазера, поляризации активного вещества и разности населенностей энергетических уровней) можно свести к системе из двух уравнений для напряженности поля и разности населенностей. В некоторых случаях в настоящей диссертации (например, в главе 3) для описания лазера используются балансные кинетические дифференциальные уравнения Статца де Марса, в которых связь плотности фотонов излучения КЛД и уровня разности населенностей позволяет проанализировать динамику и коэффициент передачи лазера (или КЛД). Однако, при использовании метода балансных уравнений, как всегда, теряются фазовые соотношения, которые являются главными при анализе влияния фазовых шумов КЛД на радиочастотные выходные шумы ОЭГ. Еще раз необходимо отметить, что большинство анализируемых схем ОЭГ с прямой и внешней модуляцией относятся к схемам с фазовой или амплитудной модуляцией оптического излучения, а в процессе фотодетектирования с самогетеродинированием информация о поднесущей содержится в фазе оптического излучения.

На выбор моделей и их ограничений при исследовании ОЭГ влияет специфика работы КЛД: квантовая природа шума, временная и пространственная когерентность, наличие пространственного распределения по амплитуде напряженности E0 (R), по фазе Ф0 (R) и по флуктуациям амплитуды m (R) и фазы, соразмерность габаритных размеров оптических каналов и площадки ФД в СВЧ диапазоне с длиной волны лазера.

Подчеркнем, что главной целью исследования в этой части является анализ влияния характеристик лазера (оптической мощности вынужденного излучения, уровня спонтанного излучения, фазовых шумов лазера, добротности или постоянной времени оптического резонатора лазера, времени жизни фотонов в оптическом резонаторе КЛД, времени жизни носителей в КЛД) и характеристик оптоволоконного тракта (геометрической длины ОВ, оптических потерь излучения в ОВ и др.) на характеристики ОАГ в целом. Поэтому при анализе лазер или КЛД выделен, как главный элемент. Лазер является оптическим квантовым генератором, генерация колебаний которого осуществляется при использовании вынужденных переходов активного вещества между энергетическими уровнями. Лазер по природе генерации отличается от традиционных электронных генераторов. Он обладает особенностями, одной из которых является квантовая природа шума лазерного излучения. При этом шумы спонтанного выходного излучения лазера, которые определяются временем жизни частиц в возбужденном состоянии, в оптическом диапазоне намного превосходят тепловые шумы.

В схемах с ПАМ и внешней модуляцией малошумящий ОЭГ строится на основе использования фазовых и амплитудных принципов модуляции лазерного излучения. В этом случае фазовые шумы лазера с учетом малости всех остальных шумов НУ и ФД определяют общий уровень фазового шума ОАГ.

1.1.4. Полуклассическое приближение лазера

или КЛД составляет одну из главных методических основ настоящей диссертации. Это означает, что для описания лазера (в главах 5 и 6), входящего в состав ОЭГ с ВОЛЗ, используются классические уравнения Максвелла, а свойства вещества или материала активного элемента описываются векторами поляризации. Особенностью подхода в полуклассическом приближении является то, что для конкретного типа лазера с узкополосным резонатором КЛД удается выразить поляризацию вещества через вектор напряженности поля. Это позволяет свести систему из трех уравнений для напряженности поля лазера, поляризации активного вещества и разности населенностей энергетических уровней к системе из двух уравнений для напряженности поля и разности населенностей (глава 2). Укорочение такой системы уравнений дает возможность получить систему из трех уравнений для амплитуды, фазы напряженности оптических колебаний и уравнение для населенности носителей активного материала. Такой подход справедлив для процессов с постоянной времени оптического резонатора 10—11…10—6, которая больше постоянной времени продольной релаксации (поляризации вещества) 10—12. При этом, для узкополосных полупроводниковых КЛД (с шириной линии менее 1…1000 МГц) постоянная времени оптического резонатора составляет 10—9 …10—6 секунд. Процесс установления населенности в активном веществе КЛД играет важную роль в процессе образования фазовых шумов (определяемых спонтанным шумом) и происходит с постоянной времени (или времени жизни носителей на верхнем энергетическом уровне) 10—9…10—8.

Описание распространения колебаний в настоящей диссертации в электронной части ОАГ в НУ, Ф и в электрических цепях ведется традиционными методами, используя аппарат теории цепей и теории нелинейных колебаний. Постоянная времени радиочастотного фильтра ОЭГ с добротностью 100…1000 на частоте, например 10 ГГц, составляет примерно 10—8 …10—7 секунд. При этом, эта постоянная времени является много большей или сравнимой с постоянной времени оптического резонатора лазера (или КЛД), которая составляет 10—12…10—6 секунд.

Можно отметить, что в ОЭГ одновременно развиваются и наблюдаются два автоколебательных процесса в разных диапазонах: оптическом и радиочастотном с отношением частот примерно 1:2800. Иначе говоря, в ОЭГ можно выделить два различных колебательных процесса на различных частотах или говорить о различных типах генераторов — оптического квантового генератора (ОКГ) с частотой генерации примерно ν0=128 ТГц и радиочастотного генератора (РЧГ) с частотой генерации f0 =1…100 ГГц. Оптический квантовый генератор, входящий в состав ОЭГ, при этом является, как бы, источником накачки для радиочастотного генератора ОАГ. Если лазер или КЛД можно выделить в ОЭГ в отдельный блок (рис. 1.2), то радиочастотный генератор (РЧГ) включает в себя лазер или КЛД. С другой стороны, ОЭГ при математическом моделировании в отдельных случаях может быть представлен схемой эквивалентного традиционного радиочастотного генератора с представлением лазера разными математическими моделями, в том числе самой простейшей: линейным или нелинейным элементом с относительно простой передаточной функцией. Например, ВОЛЗ, входящая в состав ОЭГ, может быть представлена линейным четырехполюсником, который описывается Y-матрицей с заданной входной и выходной проводимостью. В последующем анализе в главах 2 и 6 при исследовании ОЭГ используются математические модели на базе дифференциальных уравнений.


В оптическом диапазоне в малошумящих СВЧ ОЭГ поперечные размеры сечения области при фотодетектирования (или «пятна» излучения на светочувствительной площадке фотодетектора) соразмерны с длиной волны лазера. В результате интерференции на площадке фотодетектора двух оптических колебаний и фотодетектирования выделяется полезный электрический сигнал в нагрузке ФД. В отличии от радиочастотного диапазона, в котором поперечные геометрические размеры чипа детектора (например, полупроводникового диода) в 10…1000 раз и более меньше длины волны, поступающих на него электромагнитных колебаний, в оптическом диапазоне поперечные размеры светочувствительной площадки ФД (используемых в малошумящих ОЭГ, которые работают на частотах выше 0,3 ГГц) сравнимы с длиной волны лазерного излучения и составляют 1..5 мкм. В этом случае модель плоской электромагнитной волны для оптических узлов ОЭГ и фотодетекторной площадки необходимо применять с большой осторожностью.

Эти особенности являются определяющими при учете фазовых шумов ОАГ в схемах с прямой амплитудной модуляцией КЛД и внешней модуляцией модулятором Маха-Цендера.

Можно заключить, что в оптическом диапазоне фазовый шум лазера из-за перечисленных причин невозможно исключить, как это делалось во всех предыдущих работах по исследованию ОЭГ других авторов [64—70], при общем анализе фазового шума радиочастотных колебаний ОЭГ. Рассмотрим схему ОЭГ (рис.1.2) более детально.

1.1.5. Лазер и Кванторазменый лазерный диод

Лазер, входящий в состав ОЭГ (рис.1.2), представим, как оптический генератор бегущей волны. Лазер образован замкнутыми в кольцо оптическим усилителем ОУ, узкополосным оптическим фильтром ОФ и оптической линией задержки (ОЛЗ).

ОАГ с внешним модулятором Маха-Цендера (рис.1.2), с другой стороны, представляет радиочастотный генератор (РЧГ), который образован лазером и замкнутыми в кольцо электрооптическим модулятором Маха-Цендера (МЦ), волоконно-оптическим световодом (ВС), ФД, НУ, узкополосным РФ.

В такой схеме (рис.1.2) лазер, с одной стороны, осуществляет энергетическую накачку радиочастотного автогенератора РЧГ, а с другой стороны является главным элементом ОЭГ с ВОЛЗ.

Оптическое излучение (несущая частота) лазера поступает на вход модулятора МЦ, в котором излучение модулируется электрическим сигналом. Далее оптическое излучение через оптический модулятор, и ВОС поступает на светочувствительную площадку ФД (или оптический вход ФД). Полученные в низкочастотной нагрузке ФД радиочастотные колебания (поднесущая) проходят через транзисторный НУ, частотно-избирательный РФ и направляются внутри этой кольцевой системы через СВЧ направленный ответвитель (О) на управляющий СВЧ вход модулятора МЦ.

Рассмотрим особенности СВЧ генерации в ОЭГ при формировании модулированного лазерного излучения с малым индексом модуляции на выходе МИС для случая, когда ширина спектра излучения лазера намного меньше радиочастоты поднесущей. На выходе МИС спектр модулированного оптического излучения представляет собой определённый эквидистантный набор составляющих, отстоящих друг от друга на частоту поднесущей (частоту модуляции). Ограничимся рассмотрением «режима с двумя боковыми», т.е. только трёх оптических спектральных составляющих, оптические частоты которых равны, cсоответственно v1= v0-f0, v2= v0, v3= v0+f0.

Две из этих оптических частот v1 и v3 разнесёны от центральной оптической частоты лазера v0 на частоту поднесущей f0.


В дальнейшем изложении мы рассмотрим ОЭГ с МИС, в котором модулятором в ОЭГ является оптический фазовый модулятор (или как принято его называть за рубежом — модулятор интенсивности) МЦ.


Модулятор МЦ представляет собой два оптических канала ОК1 и ОК2 в виде двух полосковых оптических волноводов, соединенных на входе и выходе оптическими Y–ответвителями (рис. 1.1а). Входной Y –ответвитель распределяет лазерное излучение с напряженностью электрической компоненты электромагнитного поля по этим двум оптическим каналам. В ОК2 излучение с напряженностью электрической компоненты электромагнитного поля модулируется за счёт линейного электрооптического эффекта по оптической фазе СВЧ напряжением с выхода Ф входным радиочастотным сигналом. В ОК1 излучение этой компоненты не модулируется. Групповое время задержки на выходе ОК2 относительно входа МЦ зависит от мгновенного значения управляющего напряжения. На выходе ОК1 время задержки сохраняется постоянным. Оптическое излучение с выходов ОК1 и ОК2 с напряженностями электрической компоненты электромагнитного поля, соответственно, и объединяются (складываются) в выходном X — ответвителе и поступают на вход одиночного световода ВОС, в котором задерживаются на групповое время и, пройдя через него, поступают на светочувствительную площадку фотодетектора ФД.

Таким образом, в общем случае ОЭГ представляет собой автоколебательную систему с диссипацией, в состав которой входит дисперсионная линия задержки. Но, учитывая, что для работы в малошумящих ОЭГ используются узкополосные лазеры с шириной спектральной линии 1 кГц…1 МГц, дисперсией оптического волокна при анализе ОЭГ пренебрегаем. Влияние дисперсии оптического волокна при использовании высокодисперсионных ОВ в ОЭГ рассмотрены в главе 6 настоящей диссертации.

При изменении ФЧХ ВОС, при вариации коэффициентов возбуждения оптических волокон разной длины, входящих в состав ВОЛЗ, А и B частота ОЭГ с ВОЛЗ изменяется. Автором предложены [116—118,146] и запатентованы новые способы управления радиочастотой ОЭГ с помощью оптических и оптоэлектронных методов [119—124].

1.2. Технические особенности и достоинства ОЭГ с внешней и прямой модуляцией в схемах с самогетеродинированием

ОЭГ можно подразделить по типу МИС — с лазерами, ширина полосы которых много меньше и много больше радиочастоты модуляции f. При выполнении условия при частотной или фазовой модуляции лазерного излучения ОЭГ является системой с когерентным фотогетеродинированием или разностным генератором. В таком разностном генераторе возможно осуществить режим самогетеродинирования оптического излучения при фотодетектировании и произвести эффективное подавлением шумов, имеющих электронную и оптическую природу. Физика выигрыша поясняется «очищением спектра» разностного от двух оптических гармоник продетектированного фотодетектором колебания также, как это происходит при традиционном гетеродинном приеме. Далее в одном из разделов этой главы физика этого эффекта в ОЭГ описана более подробно. Схемы построения ОЭГ различают по способу модуляции лазерного излучения и фотодетектированию. В ОЭГ с внешней модуляцией и с ПАМ используется фазовая и амплитудная (соответственно) модуляция лазерного излучения и последующее фотодетектирование, по крайней мере, двух оптических колебаний. Одно из оптических колебаний модулировано по фазе сигналом радиочастотной поднесущей. По способу фотодетектирования эти схемы относятся к схемам с гетеродинным фотодетектированием. В схемах традиционного гетеродинного фотодетектирования, использующихся в лазерной локации, при приеме внешнего оптического излучения модулированное по фазе (или частоте) колебание принимается посредством использования внешнего оптического генератора или гетеродина, оптические колебания которого поступают на светочувствительную площадку ФД вместе с внешним принимаемым оптическим колебанием. В ОЭГ с внешней и прямой модуляцией используется самогетеродинирование, то есть сбиваются на площадке фотодетектора два (или три) оптических колебания (или гармоники с частотами 1),,, или 2) с частотами,, которые поступают от одного КЛД.

Наиболее важным достоинством гетеродинного преобразования является способность сохранения информации о фазе оптического колебания и перенос ее в электрический сигнал фототока ФД. Но при этом при фотоприеме лазерного излучения КЛД происходит перенос фазовых флуктуаций колебаний лазера, определяемых его спонтанным излучением, в фазовые флуктуации радиочастотных колебаний.

В результате самогетеродинирования в нагрузке фотодетектора выделяются радиочастотная поднесущая и фазовые шумы КЛД, выступающего в роли гетеродина (или «самогетеродина»), а спектр колебаний сигнала фототока (при условии малости собственных шумов ФД и шумов НУ) повторяет форму спектра оптических колебаний напряженности поля сигнальной волны, но со сдвигом по частоте вниз ровно на частоту лазера-гетеродина. В спектральном представлении это можно выразить так: спектр оптического сигнала (или СПМ АМ и ФМ шумов) почти без изменений сдвигается в область спектра радиочастоты поднесущей f0, а при конечной ширине спектра лазера-гетеродина спектр радиочастоты поднесущей f0 (электрического сигнала) дополнительно уширяется.

1.3 Спонтанное излучение лазера КЛД и его роль в формирование шумов ОЭГ

Задачей подраздела является для разных КГ (лазеров на рубине и неодиме, полупроводниковых КГ и КЛД) установления зависимости отношения уровня спонтанного излучения к уровню вынужденного излучения лазера на его выходе. По существу ниже обоснуем и докажем следующее положение: главным вкладом в формирование фазового шума (ФШ) в ОЭГ является вклад СИ лазера (или КЛД), а спектральная плотность мощности (СПМ) ФШ определяется отношением уровня СИ к уровню вынужденного лазерного излучения, который зависит, главным образом, от отношения населенностей активных носителей на верхнем «излучательном» уровне к общему количеству населенности носителей. Ширина линии СПМ ФШ определяется интенсивностью СИ, которая зависит от времени жизни носителей на излучательном уровне.

Подчеркнем, что влияние на формирование фазовых шумов ОЭГ шума СИ, которое обусловлено наличием относительно большого уровня спонтанного излучения (СИ), является одним из главных отличительных свойств оптических квантовых генераторов (КГ) от традиционных электронных генераторов. Как известно, уровень спонтанного излучения имеет кубическую зависимость от частоты излучения фотонов [оптика Алехин] и в оптическом диапазоне значительно превышает шум, обусловленный тепловыми факторами (от температуры), который пропорционален kT (где k- постоянная Больцмана, T- температура в Кельвинах), фликкер шум и дробовый шум, традиционно исследуемые в радиофизике. Подробнее вопрос о ФШ ОЭГ рассмотрен в главах 3,5и 6. Здесь мы обоснуем основные соотношения.

В ОЭГ по сравнению с традиционными радиотехническими автогенераторами, исследуемыми в теории колебаний, появляется новый малоисследованный в радиофизическом смысле источник шума — шум, обусловленный продетектированным ФД спонтанным излучением лазера КЛД. Для когерентных систем формирования и гетеродинного фотодетектирования, к которым относится ОЭГ, шум СИ является определяющим, так как его уровень значительно превосходит электронные собственные шумы ФД, НУ. Малое исследование СИ и не выделение его в качестве отдельного особенного квантового шума в большинстве импульсных оптоэлектронных системах, которые широко используются в ВОЛС, объясняется тем, что в них обычно используется импульсном режим работы лазера или КЛД детектирование в широком ряде случаев идет без использования гетеродинирования. В системах передачи информации, например, в обычных импульсных ВОЛС на площадку ФД (в ОЭГ на ФД поступает большой сигнал) на ФД поступает малый сигнал и детектируется импульсная мощность излучения, а шумы в ВОЛС определяются шумами фотоприемника.

Бесплатный фрагмент закончился.

Купите книгу, чтобы продолжить чтение.

Введите сумму не менее null ₽, если хотите поддержать автора, или скачайте книгу бесплатно.Подробнее