12+
Теория поглощения антиматерии

Бесплатный фрагмент - Теория поглощения антиматерии

Объем: 98 бумажных стр.

Формат: epub, fb2, pdfRead, mobi

Подробнее

Электрон и позитрон рождаются одновременно и выступают, как равноправные частица и античастица, и способны взаимоуничтожаться — аннигилировать, образуя γ-кванты.

Ядерная физика

Наука все глубже проникает в сущность вакуума. Выявлена основополагающая роль вакуума в формировании законов вещественного мира. Уже не является удивительным утверждение некоторых ученых, что «все из вакуума и все вокруг нас — вакуум».

Я. Б. Зельдович

В вакууме, находящемся в объеме обыкновенной электрической лампочки, заключено такое большое количество энергии, что ее хватило бы, чтобы вскипятить все океаны на Земле.

Р. Фейнман, Дж. Уилер

Введение

Современные учёные ведут нескончаемые споры о том, как возник наш материальный мир, но любая из высказанных ими теорий имеет множество не решенных вопросов, на которые пока нет однозначного ответа.

В настоящее время наиболее популярным направлением, объясняющим возникновение вселенной, является теория Большого Взрыва. Но при этом учёным приходится идти на всевозможные гипотетические допущения, чтобы попытаться объяснить, как всё-таки возникла материя?

Ученые не могут объяснить, почему наша вселенная состоит из вещества, а антивещества в ней крайне мало.


Поэтому всякое исследование, ставящее своей целью изучение различий между веществом и антивеществом, вызывает большой интерес.

Критика теории Большого Взрыва

Альберт Эйнштейн, автор теории Большого Взрыва

Известная нам вселенная состоит из обычной материи, при этом не удаётся объяснить, почему вселенная не состоит из равных частей вещества и антивещества, так как в процессе Большого Взрыва образовались равные количества обоих.

И если материя и антиматерия оказываются зеркальными отражениями друг друга, то в процессе Большого Взрыва не должно было остаться вообще никакой материи, так как при столкновении вещества с антивеществом происходит их взаимоуничтожение, именуемое аннигиляцией.

Согласно теории Большого Взрыва, наша вселенная возникла около полутора десятков миллиардов лет назад из некоторого начального «сингулярного» состояния, которое обладало бесконечно большими температурой и плотностью.

Это утверждение противоречит здравому смыслу, так как объект может сжиматься в сторону бесконечности только до определённого предела, но как только сжатие закончится, у любого объекта будут реально существующие параметры и поэтому вселенная не может быть создана из объекта, находящегося в сингулярном состоянии.

В то же время, такое понятие, как температура, вообще неприемлемо к подобному объекту, так как к элементарным частицам не могут быть применены подобные характеристики. Температура — это броуновское движение молекул, а их у данного объекта на начальной стадии развития ещё не было и поэтому говорить о какой-либо температуре в данном случае является не совсем корректным.

Экспериментальные наблюдения показывают, что в крупных масштабах Вселенная является однородной и изотропной, а это никак не сопоставимо с взрывным процессом. Подобное состояние наблюдаемого объекта возможно только в том случае, когда всё вещество вселенной возникло не из одной точки, а только одновременно по всему её объёму.

В последующем учёными было выявлено электромагнитное реликтовое излучение с температурой всего в несколько градусов Кельвина, которое равномерно заполняет всю вселенную. При этом было сделано предположение, что вследствие эффекта Доплера, излучение прямо по направлению его движения, должно быть немного более горячим, а в обратном направлении — более холодным.

Эти небольшие температурные вариации действительно были обнаружены экспериментально, и они имеют характерную угловую зависимость. По этим данным удалось также вычислить скорость движения Земли относительно фонового реликтового излучения, которая составляет около 600 км/с.

А раз в природе существует единая система отсчёта, относительно которой можно вести все измерения, касающиеся скорости нашего перемещения во вселенной и направление движения, то это также свидетельствует об ошибочности Теории Относительности Эйнштейна.

Один из авторитетных критиков этой теории Эрик Лернер в своей книге «Большого Взрыва никогда не было» (1991 г.) утверждает, что данная теория нарушает основополагающий постулат материального мира — закон сохранения энергии, поскольку она предполагает, что вселенная якобы возникла из ничего.

К примеру, Терри Пратчетт описал традиционный взгляд на создание Вселенной примерно так: «В начале было ничего, которое взорвалось».

Эрик Лернер указывает, что теория Большого Взрыва требует для своего обоснования слишком много гипотетических вещей — таких, как инфляция, темная материя, темная энергия и др. При этом многочисленные допущения космологов Большого Взрыва приносят больше проблем, чем они могут решить.

Далее он приводит следующие факты о несостоятельности данной теории, что она неправильно предсказывает плотность легких элементов: дейтерия, лития-7 и гелия-4, что пустоты между галактиками слишком велики, чтобы их можно было объяснить временными рамками теории Большого Взрыва, и что яркость поверхности далеких галактик наблюдается как постоянная, тогда как в расширяющейся вселенной, вследствие красного смещения, эта яркость должна уменьшаться с расстоянием.

В 1948 году Германом Бонди, Томасом Голдом и Фредом Хойлом была предложена теорию стационарной Вселенной, у которой нет начала и конца. Она вышла из космологического принципа, который утверждает, что в макроскопическом масштабе вселенная выглядит одинаково в каждой точке и в любое время.

При этом британский астрофизик Фред Хойл высказал предположение о том, что пространство вселенной может расширяться в течение неопределенного времени, сохраняя равномерную плотность, если будет появляться новая материя в процессе спонтанной генерации, в постоянном, но умеренном темпе — всего лишь несколько атомов на кубический километр в год.

Для подтверждения своей теории Фред Хойл осуществил серию исследований, которые показали, что атомы тяжелее гелия появились во вселенной не в результате Большого Взрыва, а в процессе жизненного цикла звезд при высоких температурах и давлении.

Сравнительно недавно была опубликована одна из рукописей Альберта Эйнштейна, в которой он дал положительный отзыв этой теории стационарной вселенной.

Физик Оксфордского университета Роджер Пенроуз также высказал мнение, что Большой Взрыв не был началом Вселенной, а являлся лишь одним из её чередующихся циклов расширения и сжатия.

Он считал, что черные дыры понижают энтропию Вселенной, поглощая материю и энергию. По мере распада материи в черных дырах, она исчезает в процессе излучения Хокинга, пространство становится однородным и наполненным бесполезной энергией, а деградировавшие частицы возвращаются к состоянию нулевой энтропии.

Вселенная коллапсирует сама в себя, готовая разразиться новым Большим Взрывом. Отсюда следует, что Вселенная характеризуется повторяющимся процессом расширения и сжатия, который Пенроуз поделил на периоды под названием «эоны».

Британский физик Роджер Панроуз и Ваагн Гурзадян из Ереванского физического института в Армении, проанализировали спутниковые данные NASA о реликтовом излучении и выявили 12 четких концентрических колец в этих данных, которые, по их мнению, могут быть доказательством гравитационных волн, вызванных столкновением сверхмассивных черных дыр в конце предыдущего эона.

Андрей Линде разработал теорию «вечного хаотического расширения», согласно которой вместо Большого Взрыва, при необходимой потенциальной энергии, расширение может начаться в любой точке скалярного пространства и происходить постоянно во всей мультивселеннной.


Все перечисленные многочисленные факты противоречат теории Большого Взрыва.

Млечный Путь

Как зарождается материя и антиматерия?

Любая материя состоит из протонов, нейтронов и электронов. Эти частицы имеют аналоги, известные как античастицы — антипротоны, антинейтроны и позитроны, соответственно — которые обладают той же массой, но имеют противоположный электрический заряд. Частицы антиматерии практически идентичны своим материальным партнерам, за исключением того, что переносят противоположный заряд и спин.

Возможность существования антивещества предсказал британский учёный Артур Шустер в небольшой заметке, которую он опубликовал в 1898 году в журнале Природа. Это предсказание он сделал чисто эмпирическим путём, посчитав, что согласно закону симметрии в природе, должен существовать симметричный аналог отрицательно заряженному электрону. А спустя тридцать лет знаменитый физик Поль Дирак заново открыл антиматерию, найдя антиэлектрон в своём математическом уравнении.

Английский физик-теоретик Поль Дирак

Впервые позитроны увидел в 1923 году русский физик Дмитрий Скобельцин, который работал в Ленинграде, когда исследовал гамма-лучи в камере Вильсона. Но в те далёкие годы сделанное им открытие так и не нашло своего научного объяснения.

В 1932 году американский физик Карл Андерсон наблюдал космическое излучение с помощью камеры Вильсона. При этом он вновь сделал открытие элементарных частиц, напоминающих собой электроны, но с противоположным зарядом, которые он назвал позитронами. С этого времени изучению антивещества стало уделяться большое внимание и в течении двадцатого века несколько десятков учёных были удостоены Нобелевской премии за данные исследования.

Было установлено, что позитроны образуются вместе с электронами из физического вакуума при воздействии на него сильным электромагнитным полем, а также мощным лазерным или гамма-излучением. Именно поэтому, учёные сравнивают физический вакуум с глубоким и спокойным морем, которого никто не замечает, пока оно находится в спокойном состоянии, но если на него осуществить сильное физическое воздействие, то из его недр начинают образовываться электрон-позитронные пары, которые до этого пребывали в нем в спокойном и взаимоуравновешенном связанном состоянии.


Электрон-позитронные пары элементарных частиц образуются и при взаимодействии фотона с электромагнитным полем атомного ядра, а также при радиоактивном распаде некоторых химических элементов, что впервые было обнаружено в 1934 году Ирен и Фредерик Жолио-Кюри.

Ирен и Фредерик Жолио-Кюри, Париж, 1935 год

Когда антиматерия встречает материю, то они мгновенно аннигилируют и превращаются в энергию. Аннигиляция антиматерии и материи обладает потенциалом высвобождения огромного количества энергии. При аннигиляции всего одного электрона и позитрона вырабатывается столько же энергии, сколько может возникнуть при взрыве более миллиарда атомов химического вещества, а грамм антиматерии может произвести взрыв уже размером с ядерную бомбу. Более мощного оружия, чем основанного на принципе аннигиляции, представить пока невозможно.

В то же время антиматерия является мощнейшим источником энергии, которую можно очень эффективно использовать и для мирных целей. Так, по подсчётам учёных для полета на Марс требуется всего около 1 миллиграмма антивещества, при этом космолёт может развивать очень высокую скорость, что позволит сократить время космического полёта на эту планету от нескольких дней, до нескольких часов и обеспечит технологический прорыв в освоении космического пространства. При этом, тысячи тонн химического топлива, необходимого для пилотируемого полёта на Марс и возвращения космонавтов обратно на Землю, будут заменены объёмом антивещества, эквивалентным весу одного рисового зёрнышка.

Как известно, при использовании современных космических технологий, запланированная продолжительность пилотируемого полёта на Марс, с возвращением космонавтов обратно на Землю, составляет около 500 дней.

Старт российской ракеты на Байконуре, Казахстан

В настоящее время также разрабатывается новое поколение электрических плазменных двигателей, работающих от ядерного реактора, которые уже в будущем десятилетии позволят сократить время полета на Марс до 30 — 45 дней. Создание ядерной энергодвигательной установки поручено Росатому, а разработкой нового класса космических двигателей, турбокомпрессоров и генераторов занимается Роскосмос.

В качестве примера можно рассчитать следующие величины. Так минимально возможное расстояние от Земли до Марса составляет около 55 миллиона километров. Как уже было сказано ранее, скорость движения Земли относительно фонового реликтового излучения составляет около 600 километров в секунду или 2,16 миллионов километров в час. Если предположить, что космолёт будет двигаться с такой же скоростью, то время полёта от Земли до Марса составит около 25 часов, или всего около суток.

По расчётам Hbar Technologies для того, чтобы космический корабль долетел за 40 лет до звезды Альфа центавра — достаточно всего лишь 17 граммов антиматерии. В настоящее время в американском Центре космических полётов имени Маршалла разрабатывается высокоэффективная ловушка для антиматерии. В этом проекте также участвуют и военные ведомства США.

Марс

Небольшое количество антиматерии попадает на Землю в виде космических лучей и некоторых элементарных частиц из космоса, при этом плотность элементарных частиц антивещества, достигающих нашей атмосферы, составляет от одной до более сотни на квадратный метр.

Важно также отметить, что электромагнитное поле Земли может выступать в качестве ловушек антивещества. Антипротоны находили в определенных зонах вокруг Земли — радиационных поясах Ван Аллена. Очевидно, что более крупные космические объекты, которые обладают более мощными электромагнитными полями, также способны выступать в качестве ловушек антивещества в значительно больших объемах.

Например электромагнитное поле Юпитера простирается до орбиты Сатурна и оно в 17 раз более мощное, чем электромагнитное поле Земли. А магнитосфера Солнца простирается за пределы орбиты Плутона и является в 8000 раз более мощным, чем электромагнитное поле нашей планеты, при этом магнитосфера Солнца более чем в тысячу раз превосходит суммарное электромагнитное поле всех космических объектов Солнечной системы.

Согласно высказанной мною гипотезе, в пределах Солнечной системы существует несколько более мощных радиационных поясов, чем формируемые вокруг Земли радиационные пояса Ван Аллена. Один из таких радиационных поясов будет обнаружен вокруг орбиты Юпитера, а другой ещё более мощный — будет обнаружен за пределами орбиты Плутона вокруг Солнечной орбиты. При этом, находящаяся в этих радиационных поясах антиматерия, может быть использована в качестве альтернативного источника экологически чистой энергии.

Интерес к антивеществу проявляют не только учёные. На сегодняшний день оно является самой дорогой субстанцией на Земле. К примеру, по оценке CERN, производство миллиардной доли грамма антивещества стоило несколько сотен миллионов швейцарских франков. А по оценке НАСА, стоимость одного грамма антиводорода оценивается в 62,5 триллиона долларов, что для сравнения более чем в три раза превышает гигантский государственный долг США. Так согласно данным опубликованным на сайте американского Минфина, в сентябре 2017 года государственный долг США оценивался в $20,162 трлн.

Здесь следует упомянуть об интересном наблюдении японских учёных, которые в 2016 году при изучении распада возбуждённого ядра бериллия-8 установили, что при высоких энергиях, испускаемые им фотоны, способны распадаться на электроны и позитроны. По мнению исследователей переносчиком этого нового типа взаимодействий являются частицы Х17, соответствующие короткоживущему бозону с массой около 17 мегаэлектронвольт.

В 2019 году венгерские учёные из Института ядерных исследований нашли дополнительные подтверждения существования частиц Х17, участвующих в новой пятой силе фундаментальных взаимодействиях, о чём сообщили в издании Science Alert.

Эти научные наблюдения свидетельствуют, в том числе и о том, что при определённых условиях фотоны света могут явиться источником получения антиматерии.

При столкновении космических лучей образуются позитроны и антипротоны. Ученые также располагают данными образования антивещества во время электрического разряда молний при грозе.

Строящийся в настоящее время подводный нейтринный телескоп, расположенный глубоко под поверхностью Средиземного моря, а также уже работающий нейтринный телескоп, находящийся под мощным ледовым панцирем в Антарктиде, позволят осуществлять более активный поиск антиматерии во вселенной.

Теоретическое и экспериментальное изучение физических процессов, происходящих в сильных полях различной природы, составляет одно из актуальных направлений современной физики. Особый интерес вызывает область экстремально сильных полей, при которых существенными становятся качественно новые вакуумные эффекты, обусловленные перестройкой физического вакуума.

Под физическим вакуумом понимается состояние некоторой области пространства, характеризуемое отсутствием наблюдаемых частиц и физических полей в любой момент времени. Вместе с тем, согласно современным научным данным, физический вакуум представляет собой специфическую материальную среду, состоящую из флуктуирующего множества элементарных виртуальных частиц, которые являются основой для зарождения новой материи. Именно поэтому физический вакуум является одним из наиболее фундаментальных и одновременно сложных проявлений природы.

Современная теория поля рассматривает физический вакуум, как невозбужденное состояние полевой материи, при этом энергия вакуумного состояния поля условно принята за минимальный нулевой уровень энергии.

Точное кинетическое уравнение, описывающее нестационарное вакуумное рождение частиц, было получено в 1997 году физиками-теоретиками из Дубны, Ростокского и Саратовского университетов и несколько позже учеными из Лос-Аламосской Национальной лаборатории и Тель-Авивского университета.

Вакуумное рождение электрон-позитронной пары осуществляется под действием сильного постоянного электрического поля, при этом энергия родившихся частицы и античастицы оказывается одинаковой. В настоящее время современными исследованиями доказано, что вакуумное рождение элементарных частиц может происходить не только под воздействием сильных электромагнитных полей, но и других многочисленных механизмов возбуждения физического вакуума.

Рождение электрон-позитронных пар при взаимодействии гамма-кванта с электромагнитным полем ядра, является преобладающим процессом потери энергии гамма-квантов в веществе. Вероятность рождения пары в таком процессе пропорциональна квадрату заряда ядра. Рождение электрон-позитронных пар в физике элементарных частиц, является обратным аннигиляции процессом, при этом элементарные частицы и античастицы образовываются в одинаковом количестве.


Наблюдаемая асимметрия вещества и антивещества во вселенной — одна из самых больших нерешённых задач физики. Физики называют эту ситуацию барионной асимметрией. Такое название связано с тем, что барионы, в первую очередь протоны и нейтроны, служат основными составляющими вещества.

Бесплатный фрагмент закончился.

Купите книгу, чтобы продолжить чтение.