Об авторах
Андрей Степанович Брюховецкий — профессор, доктор медицинских наук, ветеран Министерства обороны РФ, полковник медицинской службы в запасе. В настоящее время является генеральным директором Клиники восстановительной интервенционной неврологии и терапии «НейроВита». Врач-невролог высшей категории, вице-президент Международной ассоциации нейровосстановления (International Association of Neurorestoratology), член редколлегии ряда рецензируемых научных журналов: «Гены и клетки», «Journal of Translational Neuroscience and Clinics», «Journal of Neurorestoratology», «Journal Oncology Letter». С 1996 по 2002 г. руководил лабораторией высоких технологий НМИЦ трансплантологии и искусственных органов Министерства здравоохранения РФ. С 2003 по 2013 г. был координатором научной отраслевой программы РАМН «Новые клеточные технологии — медицине». С 2002 по 2006 г. возглавлял кафедру клеточной восстановительной медицины ГОУ ВПО «Российский государственный медицинский университет» им. Н. И. Пирогова. С 2012 по 2015 г. руководитель Центра биомедицинских технологий ФГБУ «Федеральный научно-клинический центр» ФМБА России. С 2018 по 2020 г. — ведущий научный сотрудник научно-исследовательского отдела Центральной клинической больницы РАН. Автор 206 публикаций в рецензируемых российских и международных научных журналах, 10 научных монографий в области регенеративной медицины, неврологии, онкологии на русском языке, 2 монографий на английском языке и 12 глав в разных коллективных зарубежных монографиях; автор 15 патентов РФ, 5 международных заявок PCT и патента США. Меценат; финансировал на собственные деньги и частные инвестиции все свои научные исследования.
E-mail: neurovita-as@mail.ru
Михаил Аркадьевич Шурдов — биолог и биофизик, в 1975 г. закончил Новосибирский государственный университет, получив диплом физика со специализацией «Квантовая оптика и радиофизика», принял предложение остаться стажером-исследователем в том же вузе. С 1975 по 1990 г. прошел все ступени научного работника: стажер-исследователь, инженер, младший научный сотрудник, научный сотрудник. В 1985 г. в Институте биофизики СО АН СССР (г. Красноярск) защитил диссертацию и стал кандидатом биологических наук. В настоящее время крупный предприниматель, председатель Правления и главный акционер группы компаний «Чебоксарский электроаппаратный завод» (ЧЭАЗ), председатель Правления ЗАО Клиника «НейроВита». Автор более 30 научных публикаций и 15 патентов РФ. Меценат, профинансировавщий на собственные средства более 20 научно-исследовательских проектов в электротехнике, электронике, медицине и биологии.
E-mail: neurovita@mail.ru
Сокращения
Вместо предисловия
(рецензия д. м. н., проф. А. Г. Жиляева)
⠀
Последнее десятилетие XX в. было объявлено мировым научным сообществом и Всемирной организацией здравоохранения (ВОЗ) «декадой головного мозга человека». Эти 10 лет в ушедшем в историю XX в. позволили очень системно и основательно организовать в разных странах мира огромное количество мультицентровых фундаментальных научных и клинических исследований головного мозга человека, стали отправной точкой создания и запуска огромного числа глобальных международных научных нейропроектов в самых разных странах мира. Эти научные исследования были направлены на глубокое и системное изучение работы и функционирования головного мозга человека и понимание информационных и кибернетических принципов его деятельности. Эта работа нейроученых из разных стран и континентов за последнее десятилетие прошлого века принесла колоссальные фундаментальные наработки и результаты и появление живого интереса молодых ученых к нейронаукам по всему миру. Были сделаны удивительные обобщения и умозаключения различных нейроученых о потенциале и информационных возможностях мозга человека и животных. Было показано, что понимание устройства головного мозга может дать научный прорыв в наших научных представлениях о мозге и о человеке в целом. «Понимание человеческого мозга является одной из величайших задач, стоящих перед наукой XXI в. Если мы сможем ответить на этот вызов, то мы можем получить фундаментальное понимание того, что значит быть человеком, разработать новые методы лечения заболеваний головного мозга и построить революционную методологию новых информационных и коммуникационных технологий» (проект The Human Brain Project, 2012).
Читая эти великие мысли европейских ученых, становится понятно, что наши знания о работе столь сложного органа человека, как его мозг, очень поверхностны и значительно устарели. Эти вызовы научному сообществу являются вызовами всему человечеству, и они требуют немедленной реакции на них и осознания глубины и сложности стоящих проблем. Врачи-неврологи и психиатры в настоящее время практически неспособны излечить ни одно из серьезных органических заболеваний и повреждений головного мозга у человека.
Повреждение спинного мозга является практически неразрешимой проблемой для всех неврологических школ в мире. Успехи в современной нейрохирургии, нейрореанимации и нейрореабилитации в спасении жизней людей при целом ряде ранее смертельных нервных болезней и недугов (тяжелая травма мозга, энцефалит, миелит, геморрагический и ишемический инсульты, аневризмы магистральных сосудов головного мозга и т.д.) обернулись армией тяжелых инвалидов с органическим дефектом головного мозга, которым физически невозможно помочь современными методами специализированной и высокотехнологичной неврологической помощи.
Резкое постарение населения в США и Европе привело к увеличению количества больных со слабоумием и болезнью Альцгеймера, число которых может вскоре утроиться — от 4,7 млн в 2012 г. к 13,8 млн к 2050 г. К 2050 г. каждый из 85 человек во всем мире будет страдать болезнью Альцгеймера (Институт здорового старения, США, 2012).
За последние 100 лет количественные показатели эффективности лечения неврологических и психических заболеваний во всем мире практически не изменились, однако расходы на лечение нервных болезней выросли в 200 раз. Согласно отчету Еврокомиссии, расходы на лечение нервных болезней только в странах Евросоюза составляют 80 млрд евро в год (Human Brain Project, 2012).
О необходимости срочного изучения устройства головного мозга и понимания механизмов его функционирования заговорили президенты мировых держав и руководство государственных союзов (Евросоюз, Евразийский союз и т.д.). Нейроученые всего мира признали недостаточность наших фундаментальных знаний о мозге и отсутствие соответствующей теории мозга. Они показали, что реального лечения нервных болезней и травмы мозга во всем мире пока нет и поиск инновационных решений и новых методологических подходов в виде нейроинженерии (neuroengineering) в восстановлении функций мозга во всех странах мира считается одним из самых перспективных и приоритетных направлений мировых исследований и крайне актуален как для военного, так и для гражданского здравоохранения.
Все это привело к тому, что уже в 2008 г. в Швейцарии стартовал один из первых европейских нейропроектов — Blue Brain Project. В 2009 г. был запущен нейропроект SyNAPSE Project по изучению межклеточных синаптических контактов в головном мозге, а уже в 2010 г. в США был открыт Connectomе Project по исследованию существующих связей в головном и спинном мозге. 2011 год ознаменовался запуском уникального проекта по созданию искусственной модели мозга — Spaun. В этом же году Еврокомиссия предложила нейроученым Евросоюза создать свой проект изучения и исследования мозга, и уже в 2012 г. такой мегапроект с финансированием в 1,2 млрд евро был запущен под названием Human Brain Project. В рамках этого проекта были задействованы 300 ведущих специалистов-неврологов, нейроученых и специалистов в области компьютерных технологий и вычислительной техники, 80 научных институтов и специализированных научных учреждений Европы и за ее пределами. Ученые предложили использовать современные компьютерные модели и симуляторы, чтобы сконструировать виртуальный мозг и создать новые лекарственные средства.
США отреагировали на подобный проект собственной научной инициативой стоимостью 3 млрд долл. США и назвали свой проект Brain Initiation Project. В американской инициативе впервые в мире были сформулированы термины и базовые сущности понимания современных нейротехнологий и определены приоритеты работы в области создания интерфейса между мозгом человека и компьютером. В 2013 г. был открыт новый Project BigBrain. Этот проект стал основой интеграции и объединения ученых-нейроанатомов и специалистов IT, которые пытаются понять на основе микронейроанатомических срезов нервной ткани сущность устройства мозга.
Китай запустил в 2015 г. свой проект исследования мозга стоимостью, эквивалентной 10 млрд долл. США, а Япония выделила на подобные научные исследования финансирование, эквивалентное 5 млрд долл. США. В итоге только за десятилетие с 2011 по 2021 г. в нейроисследования инвестирования финансовых средств эквивалентны более чем 15 млрд американских долларов. Ничего подобного ранее в медицине не происходило никогда.
За два десятилетия XXI в. такие современные науки о мозге, как неврология, нейрохирургия, психиатрия, нейропсихология, нейрофизиология, нейроанатомия и другие, объединились в единый конгломерат с современными инженерными дисциплинами и информационными технологиями и стали развиваться столь стремительно и наукоемко, что вышли на передний край всей мировой науки под флагом нейроинженерии и нейротехнологий.
Сегодня сами термины «нейроинженерия» и «нейротехнологии» никого не удивляют и не восхищают. Университеты США готовят дипломированных нейроинженеров, а нейротехнологии отнесены к критическим и двойным технологиям развитых государств мира. Гонка вооружения высокоразвитых государств XX в. сменилась гонкой технологий XXI в., где на первом месте стоят именно нейротехнологии. СМИ растиражировали достижения нейроученых всего мира и особенно пионерские исследования Оборонного агентства США (DARPA) по созданию интерфейсов между мозгом человека и компьютером (нейроинтерфейс).
Сегодня мы ждем от нейроинженерии реальных результатов биотехнологий по созданию «умного дома» для инвалидов; инвалидной коляски, «управляемой силой мысли»; нейропротезов конечностей, управляемых имплантируемыми «нейроинтерфейсами между компьютером и периферическими нервами». Соединение «живого» и «неживого» компонентов нервной ткани головного и спинного мозга человека для создания новых функций поврежденного мозга стало фундаментальной основой этих новых нейроподходов и создаваемых технологий.
Большой интерес современной отечественной науки к вопросам нейроинженерии и нейротехнологий подтверждается тем, что в России с 2015 г. осуществляется большой комплекс проектов под общим названием «Нейронет», представляющий собой национальную технологическую инициативу, в рамках которой предусматривается опережающее развитие фундаментальных и прикладных аспектов нейронаук и нейроинженерных технологий.
Рецензируемая книга очень аккуратно и деликатно вводит читателя в инновационную область современных нейронаук: нейроинженерию и нейротехнологии. Авторы очень критически анализируют состояние проблемы нейроинженерии и нейротехнологий в мире и излагают собственные данные и исследования, которыми они занимаются уже около 30 лет. Многие вещи для меня, человека, который более 30 лет занимается нейронауками, были откровением и вызвали живой интерес. Книга читается легко и просто, излагает очень сложные проблемы современных нейронаук простым и доступным языком. «Кто ясно мыслит, тот ясно излагает».
Несомненно, в монографии есть ряд очень сложных и дискуссионных вопросов, которые требуют, на мой взгляд эксперта, более детального обсуждения и иллюстраций. Так, например, мне кажется, что нужно представить более подробные данные по функциональным возможностям микроволновой энцефалографии. Хотелось бы увидеть первые опытно-конструкторские образцы этого интересного медицинского оборудования. Крайне важно, что авторы книги представили свою перспективу развития нейроинженерии и нейротехнологий на ближайшее время и на перспективу.
Благодарю авторов за созидательный научный труд и преданность своему делу в отечественных нейронауках. Признателен авторам за очень доступное и понятное написание этой научной книги, которая смогла систематизировать достаточно разрозненные знания и достижения в области нейроинженерии и нейротехнологий по всему миру и показать надежды человечества в этой области.
Надеемся, что молодым нейроученым и клиницистам будет очень интересно ознакомиться с отечественной историей становления нейроинженерии и этапами создания национальных нейротехнологий. Пожелаем доброго пути этой книге и много умных читателей и научных последователей.
Введение
Написать книгу о современной нейроинженерии и перспективных нейротехнологиях мы задумали достаточно давно, т.к. наша команда врачей-неврологов и нейрохирургов, нейробиологов, физиков, инженеров, математиков и программистов уже более 30 лет активно интересовалась и увлеченно занималась в эксперименте на животных и в клинике нервных болезней проблемой реставрации поврежденной нервной ткани и восстановлением нарушенных функций головного и спинного мозга у человека и животных. Уже более 30 лет нами применялись самые передовые для своего времени и для нашей страны биомедицинские и нейробиоинженерные технологии реставрации мозга. На протяжении этих долгих лет нами был реализован в эксперименте и применен в клинике очень широкий спектр современных биомедицинских нейротехнологий, направленных на реконструкцию и восстановление анатомо-морфологической структуры участков поврежденного спинного и головного мозга человека. Для нейрореставрации поврежденного головного и спинного мозга в конце прошлого века (1989–2000) нами применялись трансплантации фетальных клеток и клеток пуповинной крови человека, аутологичных нейральных стволовых и прогениторных клеток, полученных из обонятельной выстилки носа пациента, а также транскраниальная магнитостимуляция мозга и имплантация нейростимуляторов головного и спинного мозга человека (Брюховецкий, 2003; Брюховецкий, 2010; Брюховецкий, Хотимченко, 2018; Брюховецкий и др., 2018). Последние два десятилетия XXI в. мы активно развивали терапевтические нейротехнологии реставрации поврежденного мозга с использованием интратекальных и интравентрикулярных цитотрансфузий аутологичных и гаплоидентичных (близкородственных) гемопоэтических стволовых клеток (ГСК) костного мозга (более 17 тыс. трансплантаций у 5 тыс. человек), мобилизованных в периферическую кровь гранулоцитарным колониестимулирующим фактором (Г-КСФ). В 2005 и 2006 гг. эта биомедицинская нейротехнология была официально разрешена в Российской Федерации к клиническому применению Минздравом России и Росздравнадзором и была зарегистрирована в реестре новых биомедицинских технологий Минздрава России. Другой нейротехнологией стали наши исследования по интервенционной биоинженерии головного мозга с использованием малоинвазивных, стереотаксических и рентгенохирургических способов реконструкции мозга (более 300 операций на человеке с программной региональной перфузией, стентированием и балонной ангиопластикой, стереотаксической нейротрансплантацией и имплантацией нейростимуляторов) и операций по тканевой инженерии с имплантацией гетерогенного матрикса «СфероГель»ТМ у 104 пациентов с последствиями травм спинного мозга и имплантации биодеградируемых биополимерно-клеточных нейроэндопротезных систем.
Новым направлением нейроинженерии стали наши пионерские исследования начала XXI в. по дистанционной мультиволновой бесконтактной радионейроинженерии. Данная нейротехнология нейрореставрации поврежденного мозга была нами запатентована в 2017 г. и Роспатентом признана как одно из 100 лучших изобретений Российской Федерации в 2017 г. Более 200 человек с органическим поражением головного и спинного мозга успешно прошли лечение с использованием этой нейротехнологии. В этой книге мы целую главу посвятили этой инновационной технологии бесконтактной реставрации поврежденного головного и спинного мозга и надеемся, что многих нейроученых заинтересует наша новая разработка.
Большая часть нейроинженерных операций была проведена нами в прошлом веке еще с применением фетальных клеточных систем и биоинженерных работ по интервенционной неврологии и функциональной нейрохирургии. Они были выполнены нами на базе 32 Центрального военно-морского клинического госпиталя Министерства обороны России в рамках разработки и создания программ лечения боевой травмы мозга у военнослужащих. Часть научно-исследовательских работ была выполнена на базе НМИЦ трансплантологииНМИЦ ТиО Минздрава России и ГУ НИИ социальной и судебной психиатрии им В. П. Сербского в рамках межведомственной программы «Нейротрансплантация и клеточная трансплантация при травме головного и спинного мозга и опорно-двигательного аппарата» под руководством директора этого института акад. РАН и РАМН, проф., д.м. н. Валерия Ивановича Шумакова.
Однако самая значительная часть исследований по реставрационной нейроинженерии была выполнена нами на базе частного высокотехнологического госпиталя ЗАО Клиника «НейроВита» в рамках отраслевой научно-исследовательской программы «Новые клеточные технологии — медицине» Российской академии медицинских наук (РАМН). Научными руководителями этих больших проектов были ведущие ученые страны — директор ГУ НМИЦ трансплантологииНМИЦ ТиО акад. РАН и РАМН, проф., д.м. н. В.И. Шумаков и ректор Российского государственного медицинского университета (РГМУ) им. Н. И. Пирогова акад. РАМН, проф., д.м. н. В.Н. Ярыгин. Исследования в рамках этой программы преимущественно выполнялись и финансировались силами Министерства обороны России, а также за счет средств Минздрава России и Российского государственного медицинского университета (РГМУ). Все работы по нейробиоинженерии проходили под постоянным контролем и надзором ученых советов и этических комитетов ГУ НИИ ТиО и РГМУ, а в дальнейшем — преимущественно на средства, заработанные клиникой «НейроВита», и спонсорские частные средства меценатов, физических и юридических лиц.
Из вышесказанного очевидно, что экспериментальными и клиническими нейроинженерными технологиями в восстановлении повреждений головного и спинного мозга человека и животных наша команда занимается больше 30 лет. Однако сам термин «нейроинженерия» появился в научной литературе сравнительно недавно и преимущественно связан с появлением в начале второго десятилетия XXI в. учебных и научных программ во многих американских университетах по курсу «Нейроинженерия». До этого времени все научные и прикладные исследования в области восстановления поврежденного головного и спинного мозга, а также методы инженерного восстановления повреждений периферической нервной системы шли под флагом «реконструктивно-восстановительной нейрохирургии», «нейротрансплантации», «тканевой инженерии мозга», «биоинженерии мозга», «функциональной нейрохирургии» и т. д. В Российской академии наук (РАН) более 40 лет даже существовало такое специализированное научное направление исследований, как биоинженерия, и был организован целый академический научно-исследовательский институт, занимающийся фундаментальными проблемами биоинженерии. При этом в Российской академии наук под биоинженерией преимущественно понимались генная инженерия, пептидная инженерия, молекулярная инженерия новых лекарственных препаратов и другие виды инженерных исследований, преимущественно в биологии, сельском хозяйстве и в меньшей мере в медицине. В РАН понятие нейроинженерии в структуре биоинженерии не использовалось и не применялось в принципе. Однако уже в конце прошлого века по всему миру отдельные исследователи и исследовательские научные коллективы стали применять термины «тканевая инженерия» (Vacanty et al., 1998), «нейробиоинженерия» и «нейротехнологии» (Брюховецкий и др., 2000; Брюховецкий, 2003; Брюховецкий и др., 2018) или «нейрореставрология» (Raisman, 2006, 2015; Honyung et al., 2006; Honyung, 2018) для обозначения результатов реконструкции и реставрации нервной ткани поврежденного головного спинного мозга млекопитающих и человека.
Современное представление термина «нейроинженерия» и новое научное содержание этого термина относят к моменту появления первого научного журнала в этой области нейронаук в США. Первые журналы, специализирующиеся на этом направлении, такие как The Journal of Neural Engineering и The Journal of NeuroEngineering and Rehabilitation, появились в 2004 г. Международные конференции при поддержке IEEE начали проходить с 2003 г. На одной из них, которая проходила с 29 апреля по 2 мая 2009 г. в Анталии (Турция), под брендом 4th Conference on Neural Engineering были сформулированы основные тезисы и глобальное научное содержание этой новой мировой научной дисциплины.
Поэтому как самостоятельная научная дисциплина нейроинженерия существует сравнительно недавно, а имеющаяся информация и исследования в этой области нейронаук носят достаточно ограниченный характер. Но ситуация в этой инновационной области нейронаук очень быстро меняется. Другими словами, только за последние 10 лет в отечественной и зарубежной научной литературе сформировалось новое представление о научном и клиническом содержании термина «нейроинженерия» который включает в себя новое научное направление в нейронауках, основанное на сочетании «живых» и «неживых», искусственных инженерных компонентов нервной ткани головного и спинного мозга человека для восстановления его нарушенных функций. Однако термин «нейроинженерия» и сегодня постоянно меняется и трансформируется. Сегодня в мировой нейронауке нет единого и четкого научного и научно-практического содержания этого термина, и научные споры о сущности и содержании термина «нейроинженерия» продолжаются.
Некоторые из ведущих мировых ученых-нейрохирургов предполагают, что под нейроинженерией нужно понимать только сугубо биоинженерные и тканево-инженерные хирургические подходы, осуществляемые как в фундаментальной науке, так и в клинике нервных болезней, связанные исключительно с нейрохирургическими операциями по реконструктивно-восстановительной реставрации нервной ткани головного и спинного мозга (Honung et al., 2017; Lin et al., 2018). То есть они видят нейроинженерию как исключительно нейрохирургический инструментарий и технологический подраздел новой нейронауки под названием «нейрореставрология» (Honung et al., 2017), а не как самостоятельную научную дисциплину.
Другая точка зрения заключается в том, что под нейроинженерией другие современные нейроученые понимают более широкий круг научных и клинических исследований, целью которых является как использование «живых» компонентов нервной ткани (нейронов, астроцитов, олигодендроцитов, микроглиальных клеток и т.д.), так и применение искусственных, т.е. «неживых» компонентов (гетерогенные матриксы и биополимерные гели, искусственные хромосомы нервных клеток, искусственные митохондрии нейронов и клеток нейроглии, искусственные нервные волокна, чипы и имплантируемые микро- и наноэлектроды, управляемые электронные устройства и т.д.) для восстановления утраченных или нарушенных функций нервной ткани (Брюховецкий, Хотимченко, 2018).
Есть еще одно, достаточно ортодоксальное мнение о том, что под «нейроинженерией» следует понимать исключительно нейроматематику и нейрокомпьютерные технологии, а все другие технологии должны называться нейробиоинженерией (Галушкин, 2013). Наверное, правильнее было бы в этой книге для врачей и биологов говорить о «биомедицинской нейроинженерии», а не о техническом и технологическом аспектах этой сложной и многоуровневой проблемы. Но мы попытаемся поговорить обо всех направлениях этой современной науки под таким громким названием, как нейроинженерия, и об основных нейротехнологиях, существующих в мире в настоящее время.
Целью написания этой книги была попытка осуществить систематизацию имеющихся знаний в этой области и введение в проблему нейроинженерии отечественных нейроученых и нейробиологов, врачей-специалистов, работающих в области неврологии, нейрохирургии, психиатрии, нейрофизиологии и лучевой нейродиагностики, а также предоставить объективную информацию для большинства инженеров-технарей и нейроученых, различных наших «продвинутых» читателей, интересующихся этой областью медицинской нейронауки, а также показать ее возможности и существующие реальные ограничения на современном этапе мирового научно-технического прогресса.
Основные определения этой науки мы дадим в первой главе этой книги, но во введении к ней хочется сказать, что во все времена начиная с середины ХХ в. и в начале третьего десятилетия ХХI в. все исследования и работы в области реставрации поврежденного мозга и нейроинженерии были преимущественно закрыты грифами «Для служебного пользования» или вообще были засекречены, т.к. всегда были «несвоевременными» и «неожиданными» для общества и государства. Считается, что эти исследования якобы всегда претендовали на новые способы биоуправления мозгом, методы регуляции сознания и воздействия на психику человека. В последние годы стали говорить о нейроинженерии как науке об управлении информацией в мозге! Это связано с тем, что уже давно известна аксиома: кто будет управлять информацией и сознанием человека, тот будет управлять миром! Поэтому, с одной стороны, эти продвинутые исследования с восхищением и надеждой воспринимались отдельными учеными, определенными научными школами и группами ученых и даже обывателями различных стран мира как надежда на будущее, но, с другой стороны, они жестко контролировались государственными органами власти и осуждались и критиковались государственными чиновниками от медицины, ведущими академическими нейроучеными (нейробиологами, неврологами и нейрохирургами) нашей страны и большинства зарубежных научных школ. В СССР все исследования в области биоуправления мозга, контроля сознания и паранормальных явлений, а также нейрореставрации контролировались КГБ СССР и были преимущественно закрытыми и засекреченными. Эти исследования также всегда были жестко ограничены «неформальными» рамками морально-этических аспектов этой проблемы и существующими государственными регламентами и ограничениями. Как правило, все разработки в этом направлении отслеживались и курировались специальными службами тех стран и государственных объединений, где проводились эти исследования. Спецслужбы наших зарубежных партнеров также внимательно отслеживают все работы ведущих мировых ученых, работающих в этом направлении. По-видимому, наличие подобного контроля и надзора со стороны государств за этим научным направлением мировой нейронауки — это очень правильное и необходимое обстоятельство для безопасного будущего всей человеческой цивилизации.
Нейроинженерия, даже при своем зарождении, всегда воспринималась учеными и обществом очень настороженно и с большим недоверием, как во времена, когда с целью реконструкции нервной ткани проводили трансплантации кусочков эмбриональной нервной ткани в мозг животных и человека (Полежаев, Александрова, 1986, 1993), так и до мирового признания этих нейроисследований как официально существующей нейроинженерной науки нейрореставрологии, лидеры которой в 2005 г. создали свою международную ассоциацию ученых и исследователей (International Association of NeuroRestavrology — IANR), проводят свои съезды, конференции и мировые конгрессы (Raisman et al., 2005; Honung et al., 2010, 2018). Нейроинженерия всегда опережала время и была вообще вне времени. Нейроинженерия всегда была нейронаукой из будущего, которым мы занимались в прошлом и в настоящее время. Однако, постоянно «грезя о будущем» с его невероятными возможностями для человечества и нашей цивилизации, нейроинженерия жила в настоящем и была всегда вынуждена подстраиваться, понимать и принимать реальность происходящего, а не только прогнозировать грядущие открытия и будущие великие перспективы!
Однажды, весной 2016 г., в г. Москве мы с нашими научными сотрудниками ехали в автомобиле по дороге на работу и прочитали на одном рекламном щите удивительный по емкости и глубине предлагаемой философии рекламный слоган «Создаем будущее сегодня». Мы тогда не очень поняли, о чем был этот рекламный щит, но он нас зацепил за живое и мы долго думали и обсуждали между собой то, что это словосочетание очень хорошо отражает суть того огромного этапа нашей предыдущей жизни (почти в 28 лет), когда мы пытались создавать инновационные технологии реставрации нервной ткани головного и спинного мозга человека и животных и наши результаты почти всегда опережали время и были несвоевременными и очень пугающими для коллег и ученых, да и для нас самих. Этот высокопарный рекламный слоган можно было бы взять эпиграфом ко всей этой многолетней нашей работе, т.к. он очень емко отражал смысл проводимых нами исследований и сущность задуманной нами книги, которую мы когда-нибудь собрались написать об этом периоде нашей жизни и выпустить в свет, но не в качестве личных мемуаров о нашей жизни, а в качестве научной монографии об этом направлении нейронауки и о своем понимании этого инновационного направления современной биомедицины.
Таким образом, наш личный опыт использования нейроинженерных подходов для реставрации поврежденной нервной ткани головного и спинного мозга составляет более 30 лет, и все эти годы нам очень хотелось поделиться своими знаниями и полученным опытом с читателями. Нам было нужно рассказать об истории и основных вехах становления этой новой медицинской нейронауки в России и за рубежом. К этому времени наша команда уже считала себя достаточно продвинутыми специалистами в области инноваций в неврологии, нейрохирургии, психиатрии и нейрорегенеративной медицине, т.к. уже почти 30 лет активно и, на наш взгляд, успешно занималась нейрореставрацией поврежденного мозга человека.
С 1991 г. основной научной базой отечественной нейроинженерии была созданная в ГУ НМИЦ трансплантологииНМИЦ ТиО Минздрава России Группа высоких медицинских технологий (руководитель проф. А. С. Брюховецкий), а с 2002 г. и последние 19 лет научно-исследовательским центром этих исследований стала небольшая частная московская неврологическая клиника «НейроВита», узко специализирующаяся на нейрореставрации поврежденной нервной ткани головного и спинного мозга у человека. Однако все эти годы мы постоянно задавали себе один и тот же вопрос: есть ли у нас морально-этические основания и право заниматься нейроинженерией человека и учить других людей клинической нейроинженерии? Ведь никто из специалистов нашей группы не имеет специального технического нейроинженерного образования, т.к. не заканчивал высшего учебного заведения по нейроинженерной специальности и не учился на специализированном факультете зарубежного медицинского университета на специалиста-нейроинженера. А ведь сегодня в ряде ведущих университетов США по этой специальности выпускают профессионалов и специалистов. Сегодня этих высокообразованных специалистов как горячие пирожки разбирают лучшие нейроинженерные центры и университеты мира. И это действительно так!
Все специалисты нашей отечественной нейроинженерной группы пришли в эту специальность из разных медицинских и технических специальностей: врачи-неврологи и психиатры, нейрохирурги, нейрофизиологи, инженеры-программисты, математики, нейроматематики, биологи, биофизики. Но мы пришли в нее стихийно, точнее мы ее сами создавали, как могли и как понимали. Однако несмотря ни на что наша группа уже более 30 лет занимается этой нейронаукой. Мы не считаем себя ведущими специалистами в мире в этой инновационной области медицины и даже никогда не называем себя громким словом «нейроинженеры». При этом за это время наша научная группа выпустила в свет 200 научных статей и 12 научных монографий по специфичной тематике реставрации и реконструкции головного и спинного мозга человека у почти 17 тыс. пациентов из 50 стран мира с органическим поражением центральной нервной системы (ЦНС). В декабре 2018 г. вышло в свет наше двухтомное руководство для врачей «Стволовые клетки и технологии регенеративной медицины в лечении нервных болезней». Нашей командой было написано более двух десятков патентов на изобретение РФ в области нейроинженерии (нейротрансплантации, тканевой инженерии мозга, малоинвазивной биоинженерии мозга, ремоделирования сосудов головного мозга и т.д.) и даже были получены патент США на нейропротезную систему для тканевой инженерии мозга и патент РФ на технологию дистанционной мультиволновой радионейроинженерии. Наши специалисты кооперируются с учеными всего мира, активно занимающимися клинической нейроинженерией. Они участвовали и до настоящего времени продолжают участвовать в изучении проблемы взаимодействия «мозг — компьютер» (нейроинтерфейса), применении гиперзвука в реставрации поврежденного головного мозга и т. д.
Нашими партнерами по разработке проблем нейроинженерии многие годы были математики, физики, радиоинженеры, молекулярные и клеточные биологи и биохимики. Мы долгое время работали с группой инженеров-программистов Вычислительного центра Главного штаба Военно-морского флота России под руководством капитана I ранга, к.т. н. Д.Г. Иконникова; Центра нейрокомпьютерных исследований, руководимого профессором математики д.ф.-м. н. А.И. Галушкиным. Однако при всем этом специалисты нашей группы чувствовали себя не очень уверенно, произнося термин «нейроинженерия», и даже определенно комплексовали по этому поводу. Ведь когда об инженерии пытается говорить врач-невролог, или врач-психиатр, или вообще биолог, то это воспринимается с большой долей настороженности и сомнения. Где инженерия, а где эти гуманитарии? Но еще больше сомнений возникает тогда, когда о нейроинженерии говорит нейрохирург. В его устах это тоже не очень похоже на традиционную инженерную дисциплину, а больше на реконструктивную микрохирургическую операцию на мозге. Когда о нейроинженерии говорит математик-программист, то все понимают это как элементы рекламы или как пазлы по созданию нового нейрокомпьютера или нейросетевых алгоритмов. Многолетнее сотрудничество нашей группы с профессором математики А. И. Галушкиным, ведущим нейрокомпьютерщиком нашей страны и признанным мировым авторитетом в области нейроматематики и нейрокомпьютерной техники, дало определенный крен наших исследований в область теоретических научных изысканий. Очевидно, что нейроинженерия должна быть очень точной и математически выверенной наукой. Известно, что медицинская наука по точности — а уж неврология и психиатрия так и подавно — вторая после богословия! А тут не просто высокотехнологичная биоинженерия, а нейроинженерия!
Вначале авторов и наш небольшой научный коллектив, приступивший к написанию этой книги, терзали смутные сомнения: правильно ли мы делаем, что беремся за написание научной работы по этой тематике, и сможем ли мы правильно донести свои соображения и представления об этой нейронауке? Однако, посмотрев основные фундаментальные научные публикации и монографии по современной нейроинженерии, мы пришли к заключению, что мы, в отличие от большинства исследователей в мире, вообще по-разному понимаем научный термин «нейроинженерия» и думаем о настоящем и будущем этой нейронауки и нейротехнологий явно в разных направлениях. Поэтому в этой книге будут изложены наши личные научные представления о нейроинженерии вообще и нейротехнологиях в частности.
Мы достаточно традиционно составили оглавление этой книги. В первой главе мы решили обсудить основные аспекты терминологии и определения понятийного аппарата в сфере нейроинженерии и нейротехнологий. Попытаемся дать в ней свое определение основных понятий нейроинженерии и нейротехнологий. Эта глава посвящена больше теоретическим аспектам излагаемой проблемы, а также созданию у читателей реального представления об этой новой области нейронауки. В этой главе мы попытались изложить основные теоретические и методологические платформы нейроинженерии и основные направления научного развития этой новой области медицины.
Вторая глава книги посвящена обобщению существующих в мире современных нейротехнологий, попытке их ранжирования по основным системообразующим признакам. В ней мы попытались представить всю многогранную палитру мировых нейроинженерных изысканий и достижений ученых и показать свое частное отношение к большинству из них. Нет, в этой главе мы не ставили задачу осуждать и критиковать другие научные коллективы нейроученых, но попытались вместе понять, насколько представленные миру факты о прорывах в нейроинженерии действительно отражают мировой научный прогресс — или это только фейковые новости из мира науки, за которыми ничего нет или мы этого просто не смогли увидеть. На наш взгляд, она получилась достаточно громоздкой и зачастую дублирующей уже известный материал. Но это было сделано умышленно, чтобы показать читателю, что большинство нейротехнологий — это вариации на тему нейрореставрации мозга и разработки и создания реально существующего нейроинтерфейса.
В третьей главе монографии были кратко изложены основные положения авторской теории информационно-коммутационного устройства головного мозга человека проф. А. С. Брюховецкого как нового научно-методологического подхода к современной нейроинженерии. Мы считаем, что именно новая теория инновационного понимания информационно-коммутационного устройства головного мозга человека, постулирующая информационные принципы его функционирования, позволяет увидеть перспективы развития и совершенствования этого нового сектора высокотехнологичной медицины.
Четвертая глава книги посвящена описанию нашего открытия микроволновой биоэлектрической активности (БЭА) головного мозга человека и разработке и обсуждению перспектив создания нейроинженерных микроволновых технологий диагностики его патологии. Открытие микроволновой БЭА мозга стало возможно исключительно на основе новой теории устройства мозга человека. Мы убеждены, что четкое понимание нейромикроволновых технологий этой инновационной нейронауки основанных на новых научно-теоретических информационно-коммутационных представлениях позволит с новых научно-методологических позиций решать проблемы теоретической и практической нейроинженерии. В ней мы представляем полученные объективные экспериментальные доказательства установленных научных фактов нашей научной теории. Мы подтверждаем в эксперименте научное предположение о том, что кора головного мозга не умеет «думать», а «нейропроцессором» в голове человека является не столько кора головного мозга, как общепризнанно в мире, сколько межоболочечное ликворное пространство, где коммутация электромагнитных сигналов от различных отделов мозга человека осуществляется вне нервной ткани головного мозга (ГМ) на уровне электромагнитных волн (ЭМВ), излучаемых корой ГМ, и их суперпозиций сверхвысокочастотного (СВЧ) диапазона. Мы приводим доказательства регистрации этих ЭМВ СВЧ-диапазона в ликворном пространстве и показываем на научных фактах и на наших исследованиях, что мысль и сознание человека материальны и могут быть оцифрованы и зарегистрированы высокочувствительным современным антенным СВЧ-оборудованием экспертного класса.
В пятой главе этой книги описаны подходы к разработке и созданию микроволновой энцефалографии головного мозга. Это совсем новое направление в нейроинженерии и нейротехнологиях, где мы впервые демонстрируем достигнутые нами собственные уникальные достижения и возможность зарегистрировать микроволновые биопотенциалы электрической активности головного мозга в диапазоне от 1 до 4,5 ГГц. Предложенная нами нейротехнология в миллиард раз (109) отличается об современных аппаратных средств для регистрации биоэлектрической активности ГМ. Эта глава написана совместно с инженером-математиком и радиоинженером Леонидом Игоревичем Брусиловским. Без его настойчивости и энтузиазма это направление нейроинженерии вряд ли бы имело шанс на существование. Поэтому авторы выражают ему искреннюю признательность за проведенную совместную работу и соавторство в этой главе.
В шестой главе книги обсуждаются технологии реставрации поврежденного головного и спинного мозга человека путем применения технологий регенеративной медицины различными клеточными системами. В ней будут представлены основные интервенционные нейробиоинженерные технологии и технологии тканевой инженерии в реконструкции нервной ткани головного и спинного мозга.
В седьмой главе книги мы решили обсудить нашу авторскую запатентованную нейротехнологию под названием «дистанционная мультиволновая бесконтактная радионейроинженерия». Эта инновационная технология нейроинженерии нами была разработана как способ отрицания большой нейрохирургии в реконструкции мозга. Как мы уже отмечали ранее, по решению Роспатента эта нейротехнология вошла в число 100 лучших изобретений в России в 2017 г. Это большая честь для нас, и мы очень гордимся тем, что она была замечена ведущими отечественными патентоведами и экспертами по патентному праву и удостоена столь престижного диплома. Это позволяет нам надеяться, что она найдет своего потребителя в клинике в ближайшее время.
В восьмой главе мы поговорим о том, как лично мы видим ближайшее будущее нейроинженерии, а точнее о разработке и создании новаторской технологии гиперзвуковой нейроинженерии ГМ и устройствах для ее реализации в клинике, созданных на базе современных МРТ-аппаратов. Что касается практической реализации идеологии гиперзвуковой нейроинженерии, то она находится в самом начале большого пути, т.е. тогда, когда уже почти полностью выкристаллизовалась основная научная идея этого научного подхода к реставрации тканей и органов, но есть технологические трудности создания аппаратных средств этого направления нейроисследований. Правильнее было бы сказать, что мы попытались очертить новое и очень перспективное, на наш взгляд, направление в современной нейронауке и показать одно из интереснейших новых направлений развития мировой научной нейроинженерной мысли.
Публикуя свои соображения на этот счет, мы прекрасно осознаем, что разработка и создание новых гиперзвуковых аппаратных комплексов, работающих под контролем МРТ, для этого инновационного направления нейроинженерии — путь к биотехнологическому прорыву в современных методах биоинженерии органов и тканей человека и животных. Очевидно, что разработка и создание подобных проектов — это преимущественно прерогатива крупных государственных «технологических долин», имеющих колоссальные финансовые ресурсы и неограниченные возможности кооперации ученых и профессионалов самых разных специальностей из разных стран мира в определенной области знаний. В маленькой частной клинике добиться нужного результата можно, но на это уйдут многие годы и колоссальные средства, которые вряд ли окупятся созданным нейроинженерным продуктом. Подобный нейроинженерный проект по уровню финансирования, по наукоемкости и ценности полученных результатов для человечества равнозначен аналогичным параметрам космического полета на Марс или на Луну. Но мы не привыкли тратить на медицину и изучение человека такие большие средства и ресурсы. Это же не освоение космоса!
Создание гиперзвуковой биоинженерии под контролем МРТ может стать следующим шагом научного прогресса в неврологии, психиатрии и нейроонкологии и вообще во всем мировом здравоохранении. Иллюстрацией подобного подхода могут служить уже существующие нейротехнологии фокусированного ультразвука (ФУЗ). Осуществление научного прорыва в неврологии и нейроонкологии посредством ФУЗ под контролем МРТ позволило производить высокотехнологичные точечные стереотаксические операции на структурах мозга человека при болезни Паркинсона и спастическом параличе. ФУЗ обеспечил применение уникального инструментария дистанционного электромагнитного воздействия ФУЗ путем создания локальных микроишемий в патологических зонах в ГМ и СМ человека. Главное отличие предлагаемого гиперзвукового воздействия на нервную ткань ГМ или ткань других органов заключается в том, что оно не повреждает тканевую и сетевую структуру ЦНС или тканевую структуру солидного органа. От ФУЗ-воздействия под контролем МРТ в нервной ткани остаются локальные очаги некроза и ишемии, а применение гиперзвукового воздействия не разрушает структуру нервной ткани, изменяя фенотипические и молекулярно-биологические характеристики клеток, входящих в нее.
Девятая глава книги была целенаправленно посвящена проблеме нейроинтерфейса, освещению существующих проблем и поиску путей ее решения. Мы в ней больше теоретизируем о возможности создания инвазивных и неинвазивных нейроинтефейсов и предлагаем свои пути решения данной проблемы. С ними можно соглашаться, не соглашаться или отрицать их полностью, но это наш взгляд на проблему, и мы его изложили для критики и обсуждения.
В десятой главе книги мы решили поразмышлять по поводу сложнейшей нейроинженерной проблемы, связанной с созданием современного природоподобного вычислительного суперкомпьютера. Мы демонстрируем свою альтернативную точку зрения на эту мировую проблему: почему надо отказаться от создания нейроморфного супервычислителя на базе нейрокомпьтерных сетей, а отдать предпочтение новейшей методологии разработки и создания капитумморфного (от лат. capitum — голова; подобного голове) суперкомпьютера, т.е. супервычислителя, копирующего не принципы устройства нервной ткани головного мозга человека, а информационные принципы устройства головы человека, млекопитающих и птиц. В ней мы также обсуждаем возможные нейротехнологии в разработке и создании этого принципиально нового поколения вычислительной техники и суперкомпьютеров.
В заключении мы обобщили все наши собственные наработки в области нейроинженерии и нейротехнологий и представили основные перспективные направления развития этого важного аспекта нейроинженерии.
Создание этой книги было бы невозможным без помощи большого научного и практического коллектива математиков и физиков, увлеченно занимающихся проблемами нейроинженерии, возглавляемого Леонидом Игоревичем Брусиловским, ставшим соавтором двух глав этой книги и генератором новых идей по реализации новых нейроинженерных подходов; также без сотрудников клиники «НейроВита» клиническая часть нейроинженерных работ была бы просто невозможна.
По всем вопросам, возникшим при прочтении этой книги, просим направлять корреспонденцию по адресу: neurovita-as@mail.ru.
⠀
Авторы
Глава 1. Что такое нейроинженерия и нейротехнологии?
Слово «нейроинженерия» в первых декадах XXI в. уже никого не удивляет, как не удивляет и появление новой профессии — нейроинженера. Эта инновационная терминология новой инженерной специальности настолько широко растиражирована в интернете и среди «продвинутой» современной молодежи и студентов, занимающихся роботехникой и информационными технологиями, что каждый второй уважающий себя школьник старших классов и студент первых курсов современного медицинского или технического университета знает о существовании этой новой специальности в нейронауках и может порассуждать о ней и ее перспективах, о зарплатах нейроинженеров и привести примеры внедрения и применения нейроинженерии и нейротехнологий на практике.
Из названия этой новой нейронауки очевидно, что термин «нейроинженерия» (neuroengeenering) является производным от двух достаточно понятных английских слов: neuro или neural (нервный) и engeenering (инженерия — создание технических устройств). Первый корень этого слова — neuro — предполагает, что эта наука направлена на создание технических устройств для реализации задач основных нейронаук (психиатрии, неврологии, нейрохирургии, нейрофизиологии и т.д.).
В интернете русская версия Википедии (2019) дает следующее определение нейроинженерии как самостоятельной науки: «Нейроинженерия — это новая научная дисциплина, входящая в состав биомедицинской инженерии, использующая различные инженерные методы для изучения, восстановления, замены или укрепления нервной системы». В зарубежной версии Wikipedia (2021) также представлено очень похожее определение, в котором утверждается, что нейроинженерия — это дисциплина в биомедицинской инженерии, которая использует инженерные методы для понимания, восстановления, замены, улучшения или иного использования свойств нейральных систем (Hetling, 2008). В целом эти определения дублируют, по сути, друг друга, что свидетельствует о том, что это достаточно общая современная концепция понимания нейроинженерии, и она сводится к тому, что нейроинженерия — это часть большой общей современной науки биоинженерии и предназначение у нее достаточно целенаправленное: детальное изучение и понимание устройства мозга, его оптимальное восстановление в местах повреждений путем замены пострадавшей части нервной ткани на искусственные неживые элементы для восстановления утраченных функций. Несомненно, что данное определение не конкретизирует ее фундаментального содержания и научного смысла, но очень точно определяет и очерчивает ее границы и подчеркивает специфику работы специалистов-нейроинженеров. J.R. Hetling (2008) считает, что нейральные инженеры имеют преимущество перед другими специалистами инженерного профиля в том, что они обладают уникальной квалификацией работы на стыке живых нервных тканей и неживых механических и электронных конструкций.
По другим представлениям, нейроинженерия — новая, быстро развивающаяся междисциплинарная наука, изучающая фундаментальные механизмы передачи сигналов в мозге и возможности управления реакциями центральной и периферической нервных систем. Она использует методы и достижения клинической и экспериментальной неврологии, нейрофизиологии, биофизики, кибернетики, компьютерной инженерии, материаловедения и, конечно же, нанотехнологий. Одна из основных задач нейроинженерии — это «создание гибридных систем из живых и неживых элементов» для внедрения имплантатов, управляемых нервной системой, с целью устранения ее нарушений. Для ее решения необходимо создать биосовместимый стабильный интерфейс нервной клетки и соответствующего неживого элемента. В редакционной статье Journal of Neural Engineering (Sept. 2007. Vol. 4, №4. DOI: 10.1088/1741—2552/4/4/E01) под названием What is Neural Engineering? («Что такое нейральная инженерия?») ее автор Dominique M. Durand рассуждает на тему появления термина «нейроинженерия». Он считает, что еще прошло совсем немного времени с тех пор, как впервые возник термин «нейральная инженерия» (нейроинженерия), или «нейроинжиниринг». Появление этой новой сферы в нейронауках автор приписывает необходимости признания того очевидного факта, что инженеры, ученые в области нейробиологической науки и врачи должны объединить свои усилия, чтобы направить внимание на проблемы, связанные со сложным функционированием нервной системы человека, и понять ее устройство. Он убежден, что нейральная инженерия уже дала очень много для нейронаук и еще очень много даст информации для понимания устройства мозга человека в будущем. Автор приходит в выводу, что поводов для радости много, и это касается не только разработки интерфейсов, осуществляющих взаимодействие между мозгом и компьютером, но и почти неиспользованного потенциала развития методов лечения больных с неврологическими расстройствами, такими как инсульт или эпилепсия. Он утверждает, что к настоящему времени эта сфера существенно укрепилась и повзрослела, о чем свидетельствуют ее уверенное и регулярное присутствие на многочисленных мировых симпозиумах, а также растущий объем публикуемых материалов по данной тематике. Как результат сформировался определенный масштаб этой области науки, требующий четкой дефиниции нейральной инженерии. Подобной точки зрения придерживается достаточно большое число зарубежных ученых, работающих в этой области (Vilela, Hochberg, 2020; Milekovic et al., 2019).
Редакционный совет журнала Neural Engineering определяет эту область следующим образом: «Нейральная инженерия представляет собой возникающую междисциплинарную область исследований, которая стремится задействовать нейробиологическую науку и инженерные методы в целях анализа неврологического функционирования, а также выработки решения проблем, соотносящихся с неврологическими ограничениями и расстройствами». Основная миссия данной области, по их мнению, состоит в разрешении проблем, соотносимых с нейробиологической наукой, и в предоставлении реабилитационных решений применительно к состояниям нервной системы. Акцентирование, которое уделяется инженерии и количественной методологии, применяемой для воздействия на нервную систему, отделяет нейроинженерию от традиционных областей нейробиологической науки, таких как нейрофизиология. Интеграция и взаимодействие, осуществляемые между нейробиологической наукой и инженерией, отделяют нейральную инженерию от других инженерных дисциплин, в частности от искусственных нейральных сетей (artificial neural networks).
Как утверждается на официальном сайте Центра нейротехнологий (CNT) Вашингтонского университета (США), в начале третьего десятилетия XXI в. неврология стала одной из самых быстро развивающихся областей современной медицинской науки. Ее бурный рост поощряется новыми техническими инструментами и инженерным сотрудничеством, которое позволяет нейроученым и инженерам как никогда раньше заниматься изучением и реставрацией нервной системы человека. Нейроинженерия сегодня представляет собой сочетание имеющегося опыта нейробиологии, теоретических достижений в области мозга с инженерными подходами в лечении неврологических расстройств, заболеваний и травм мозга. Нейроинженерия в своем междисциплинарном подходе соединяет базовые принципы нейробиологии и инженерии, изучает возможность приложения этих знаний в синтетических сенсорных системах, искусственных протезах и других вспомогательных устройствах движения у людей с поврежденной нервной системой (http://csne-erc.org/education-k-12-resources-teachers/introduction-neural-engineering).
Фундаментом нейроинженерии являются нейронауки, а составными частями — классические инженерные науки. Нейральная инженерия (нейроинженерия) как бы располагается между трех основных наук и опирается на них в своем развитии. С одной стороны, в очень большой степени она опирается на классическую фундаментальную нейробиологическую науку (neuroscience), а с другой — на клиническую неврологию. С третьей стороны, опорой нейроинженерии является целый пласт технических инженерных наук (квантовая физика, информатика, радиофизика, нейроматематика, теоретическая механика и т.д.). Область нейральной инженерии охватывает экспериментальные, вычислительные, теоретические, клинические и прикладные аспекты сферы исследований, изучаемые на молекулярном, клеточном, тканевом и системном уровнях. Хотя и существует определенное наслоение и дублирование различных предметов дискуссии в нейроинженерии (например, нейромодуляции и нейропротезирования), все данные области являются четко сформулированными и обладают признанными отличительными характеристиками и определенной спецификой.
Университет Джона Хопкинса на своем сайте в конце 2020 г. в разделе «Нейроинженерия» дает очень емкое определение этого научного раздела нейронаук. По их мнению, нейроинженерия включает фундаментальные, экспериментальные, вычислительные, теоретические и количественные исследования, направленные на понимание и улучшение функции мозга при здоровье и болезнях во многих пространственно-временных масштабах. Исследования в нейроинженерии, по мнению специалистов Университета Джона Хопкинса, внедряют новые технологии для оценки и регулирования функции нервной системы для улучшения скрининга, диагностики, прогноза, реабилитации и восстановления. Специалисты из Центра нейроинженерии Университета Джона Хопкинса ключевые направления исследований в области нейроинженерии определили следующим образом:
• NeuroЕxperiment (нейроэксперименты) — направление разрабатывает и использует экспериментальные методы измерения и управления когнитивными функциями мозга. Эти усилия включают новые методы в системной нейробиологии и картировании мозга;
• NeuroTech (нейротехнологии) — направление разрабатывает и внедряет инструменты для распознавания и управления мозгом и поведением человека, включая нейроморфную инженерию, передовую оптическую визуализацию, интеллектуальные агенты, протезы и роботов;
• NeuroData (нейроданные) — направление создает возможности для науки о мозге с интенсивным использованием данных, интегрируя нейроинформатику, вычислительную нейробиологию и системы машинного обучения для анализа и моделирования наборов данных неврологии любого размера;
• NeuroDiscovery (нейрооткрытия) открывают основные принципы нейронного и коннектомного кодирования, изучают внутренние системы координат мозга и расшифровывают беспрецедентную способность мозга понимать сложные явления;
• NeuroHealth (нейроздоровье) улучшает, восстанавливает и увеличивает нормальную и нарушенную нервную функцию, уделяет особое внимание диагностике, прогнозу и лечению расстройств нервной системы.
Как мы уже отмечали во введении, как самостоятельная научная дисциплина нейроинженерия существует сравнительно недавно, а имеющаяся информация и исследования носят весьма ограниченный характер. Хотя ситуация быстро меняется, и то, что вчера воспринималось как научная фантастика в нейроинженерии, сегодня является рутиной и реальностью современных нейротехнологий. Первые журналы, специализирующиеся на этом направлении (такие, как The Journal of Neural Engineering и The Journal of NeuroEngineering and Rehabilitation), появились в 2004 г. Международные конференции при поддержке IEEE начали проходить с 2003 г. под международным брендом Conference on Neural Engineering.
Существует особая точка зрения, что нейроинженерия — это одна из дисциплин современной технической инженерии, основанная на таких научных ответвлениях, как нейрофизиология, клиническая неврология, электротехника, и включающая элементы таких научных дисциплин, как робототехника, кибернетика, компьютерная инженерия, материаловедение и нанотехнологии. Цели нейроинженерии направлены на восстановление и увеличение функций человека через прямое взаимодействие нервной системы с различными электронными и механическими устройствами. Очевидно, что многие современные исследования ориентированы на понимание кодирования и обработки информации в сенсорных и моторных системах, количественной обработки информации, оценки того, как она меняется в патологических состояниях и как этим можно управлять через взаимодействия со внешними искусственными устройствами (Рывкина, 2010; Nuyujukian et al., 2018; Hosman et al., 2019).
Другое понимание термина нейроинженерия — это сугубо медицинское представление этого нового направления в нейронауках. Под клинической нейроинженерией в этом контексте понимаются способы и методы нейровосстановления и нейрореставрации морфологического субстрата головного и спинного мозга человека, осуществляемые во время нейрохирургических операций по тканевой инженерии и малоинвазивных интервенционных вмешательств биоинженерии поврежденной нервной ткани (Honnung et al., 2017; Брюховецкий, Хотимченко, 2018). Через восстановление анатомической и физиологической структуры поврежденного мозга с использованием как живых, так и неживых систем обеспечивается восстановление утерянной функции головного и спинного мозга человека. Эта область клинической нейроинженерии связана с общими тенденциями технологического развития в медицинской науке и обществе, а также с мировым научно-техническим прогрессом и появлением новых технологий и технических устройств нейроуправления и нейрореставрации. Однако правильнее не отделять биоинженерию от технических устройств, сопряженных с мозгом человека. По мнению О. Рывкиной (2017), нейроинженерия является междисциплинарной наукой, которая использует для своих исследований методику и разработки, созданные в клинической и экспериментальной неврологии. Кроме того, она включает элементы кибернетики, компьютерной инженерии, а также материаловедения и нанотехнологий и использует лабораторные приборы, применяемые в этих областях. Нейроинженерия — это новая дисциплина, в которой технические методы и лабораторное оборудование используются для исследования центральной и периферической нервных систем, их функций и управления их реакциями. Чтобы понять суть нервного процесса и научиться восстанавливать утраченную функцию, наука должна научиться фиксировать деятельность нервной системы и стимулировать ее. Современная комплектация лабораторий делает это вполне возможным. Так, микроэлектронные матричные записывающие устройства (MEA) способны одновременно зафиксировать активность множества нейронов, а это дает ученым возможность понять протоколы работы распределенной нейронной сети.
Перед нейроинженерией стоит задача понять фундаментальные механизмы и тонкости клеточной сигнализации и синаптической передачи, что позволит разработать технологии, которые копируют эти механизмы с помощью искусственных устройств и соединяют их с нервной системой на клеточном уровне. Новейшее оборудование для лабораторий позволяет приступить к созданию точных, информативных и биосовместимых нейральных интерфейсов. В последнее время оснащение лабораторий нейроинженерии пополнилось электродами, которые сделаны не из металла, а из углеродных нанотрубок, ориентированных вертикально (VACNF). Углеродные нанотрубки представляют собой электрохимически активные структуры, которые можно объединить в параллельные матрицы с помощью обычных инструментов, основываясь на методах микроинженерии. В отличие от стандартных плоских матриц, нанотрубки способны обеспечивать новые, неплоскостные и высокодифференцированные объемные 3D-структуры, дающие уникальные возможности исследования процессов как вне, так и внутри клетки.
Под термином «нейробиоинженерия» в конце прошлого века сначала понимали исключительно нейроанатомо-морфологические реконструктивные подходы к восстановлению поврежденного мозга нейрохирургическими методами. Затем к биоинженерии стали относить различные имплантации шунтов или портов в желудочковую систему мозга человека. В результате этих несложных операций удавалось восстановить нормальную функцию ликвородинамики головного мозга, осуществлять нормализацию внутричерепного давления, предотвратить возникновение внутренней и внешней гидроцефалии и профилактировать атрофии нервной ткани коры головного мозга. То есть нейробиоинженерия предполагала набор методологических инструментов и медицинских методик по имплантации различных биополимерных устройств в мозг человека в объеме новаторской имплантологии в нейрохирургии. Их установка (имплантация) в головной мозг обеспечивала восстановление нарушенных функций и предотвращение дальнейшего повреждения нервной ткани головного и спинного мозга исключительно нейрохирургическим путем, т.е. с использованием известных или нестандартных реконструктивно-восстановительных нейрохирургических операций. Эти операции предполагали, например, транспозицию (перенос на расстояние) под кожей пациента (животного) собственного сальника на сосудистых связях из брюшной полости к аваскуляризированному (плохо кровоснабжаемому сосудистому) участку поврежденного спинного или головного мозга самого пациента для его реваскуляризации (сосудистого обеспечения) и восстановления нарушенного кровообращения и микроциркуляции в нем. Также под нейробиоинжененерией понимались операции по трансплантации донорского участка нервной ткани или трансплантации различных типов клеток (аутологичных, аллогенных фетальных или ксеногенных) и тканей нервной системы в область повреждения головного и спинного мозга животных и человека. Так, наша научная группа занималась тем, что мы активно моделировали в эксперименте на телятах пересадку куска спинного мозга на сосудистых связях от одного животного — донора другому теленку — реципиенту с использованием операционного микроскопа, микрохирургической техники, микроинструментария и клеточных суспензий (Брюховецкий, 2003, 2010). Исследователи и врачи-экспериментаторы широко использовали разные типы клеточных суспензий для внутритканевого клеточного «обкалывания» трансплантатов донорской нервной ткани на сосудистых связях для повышения их приживляемости и восстановления синапсогенеза в поврежденной центральной нервной системе (ЦНС) и периферической нервной системе (ПНС) (Брюховецкий, 2003, 2010; Брюховецкий, Хотимченко, 2018). Военные врачи в России моделировали на крысах и собаках боевую травму мозга и пытались приживлять в зоны огнестрельного и минно-взрывного повреждения мозга куски гипоталамо-гипофизарного комплекса другого животного и человека (Брюховецкий, 2003). Подобные операции проводились и для целей андрологии, и для восстановления сексуальной дисфункции у человека при тяжелых эндокринных заболеваниях. Нейрохирурги различных учреждений г. Москвы и Санкт-Петербурга широко проводили стереотаксические операции по трансплантации фетальной ткани эмбрионов человека в различные участки головного мозга животных с экспериментальной травмой головного и спинного мозга, у больных эпилепсией и раненых с боевой минно-взрывной и огнестрельной травмой (Брюховецкий и др., 1989). Широко применялась нейротрансплантация при болезни Паркинсона в рамках европейской программы NECTAR в ГУ «НИИ нейрохирургии им. Н. Н. Бурденко» РАМН. Также подобные работы по нейробиоинженерии широко проводились на базе НМИЦ трансплантологии и искусственных органов Минздрава России и Российского университета дружбы народов им. Патриса Лумумбы в интересах Министерства обороны Российской Федерации под научным руководством акад. РАН и РАМН, проф., д.м. н. В.И. Шумакова.
Позже, с конца 90-х гг. ХХ в. и в начале 2000-х гг. ХХI в., с появлением в России современных зарубежных ангиографических комплексов типа Integris 2000 фирмы Philips под медицинской малоинвазивной нейроинженерией в научной литературе стали понимать целый комплекс рентгенохирургических подходов и рентгенохирургических интервенций на сосудах головного мозга, сочетающихся с проведением стереотаксических операций функциональной нейрохирургии для трансплантации нервных клеток. К этому времени за рубежом появилось новое научное направление интервенционной кардиологии с использованием ангиопластики, баллонной дилатации и стентирования сосудов, которое стало бурно развиваться и в России, и мы с огромным энтузиазмом начали заниматься этим направлением на сосудах мозга. Именно тогда нами были запатентованы основные способы реставрации поврежденного головного мозга человека (Биоинженерный способ восстановления функций мозга: патент на изобретение РФ №2152038 от 27.06.2000 / А. С. Брюховецкий, Т. Б. Дмитриева, В. П. Чехонин и др. — 7 с.; Биоинженерный способ ремоделирования сосудистой системы мозга: патент на изобретение РФ №2152039 от 27.06.2000 / А. С. Брюховецкий, Т. Б. Дмитриева, В. П. Чехонин и др. 6 с.; Способ получения препарата эмбриональных нейронов человека для цитотрансфузии: патент на изобретение РФ №2146932 от 27.03.2000 / А. С. Брюховецкий, Т. Б. Дмитриева, В. П. Чехонин и др. — 8 с.) и появились наши первые работы по реконструкции мозга при боевой травме мозга человека (Козин и др., 1998; Брюховецкий и др., 1998), а также по применению стереотаксиса для трансплантации фетальных тканей человека в подкорковые структуры головного мозга (Брюховецкий и др., 1998).
И хотя эффективность биоинженерных стереотаксических операций по трансплантации фетальной нервной ткани при повреждениях головного мозга была крайне низкой и сомнительной, как и трансплантация фетального биоматериала при болезни Паркинсона в Швеции, проводившаяся в ведущих нейрохирургических институтах Европы и нашей страны (ГУ «НИИ нейрохирургии им. Н. Н. Бурденко»), еще почти 10 лет эти исследования были в центре нейроинженерных научных исследований и научных дискуссий в нашей стране. Но их революционность, инновационность и достаточная безопасность позволили перешагнуть «порог страха» в реконструкции головного и спинного мозга человека и показали, что аллогенные (чужеродные) клеточные системы способны прижиться в мозге другого человека и выжить там до 20–25 лет, что было показано на аутопсиях больных паркинсонизмом в Швеции (Buclund et al., 2016). Недостаточная эффективность нейротрансплантаций в нейроинженерии привела к тому, что на смену им пришли стереотаксические операции по имплантации нейростимуляторов отечественного производства и импортных электронных нейростимуляторов фирмы Меdtronic (USA). Все эти операции функциональной нейрохирургии интерпретировались сообществом мировых ученых как передовые нейроинженерные биотехнологии.
Наша исследовательская группа также приобрела свой аппарат стереотаксиса и с огромным энтузиазмом занималась стереотаксическими операциями у раненых военнослужащих с тяжелыми черепно-мозговыми повреждениями. Мы также проводили имплантации электродов нейростимуляторов отечественного и импортного производства в головной и спинной мозг пациентов с посттравматическими вегетативными состояниями, сочетая их с трансплантацией клеток фетальной нервной ткани (Брюховецкий, 2003, 2010). Эти новые биоинженерные технологии нейровосстановления поврежденного мозга нейрохирурги определяли как новую нейрохирургическую специальность под названием «функциональная стереотаксическая нейрохирургия», а трансплантологи страны относили их к новому направлению в частной трансплантологии — нейротрансплантологии.
Поскольку наша команда работала под эгидой главного трансплантолога страны акад. РАН и РАМН, проф., д.м. н. В.И. Шумакова, мы считали себя нейротрансплантологами, и некоторые наши коллеги даже защитили диссертационные исследования в ученом совете ГУ «НМИЦ трансплантологии и искусственных органов» Минздрава России по этой тематике (Козин, 2001). Наша объединенная научно-исследовательская нейробиоинженерная группа, состоящая из специалистов различных ведомств (Минздрава России, Министерства обороны РФ, Министерства внутренних дел РФ и др. ведомств), очень широко использовала любую возможность применения интервенционных рентгенохирургических и стереотаксических технологий в реконструкции поврежденного мозга. Особенно широко применялись эти биоинженерные технологии у раненых с боевой травмой мозга, доставленных из зон локальных конфликтов, в которых активно участвовала Россия (Афганистана, Чечни, Абхазии, Нагорного Карабаха и т.д.), санитарной военной авиацией.
Для улучшения и ремоделирования сосудистого русла зон повреждения головного мозга нами применялось введение стентов и региональных катетеров в магистральные сосуды мозга для программной инфузии лекарственных средств, и это обеспечивало глобальные изменения геометрии сосудистого русла и значительное увеличение кровоснабжения за счет формирования в мозге коллатеральных сосудов (Брюховецкий, 2003). Наши нейрохирурги широко применяли имплантации в желудочковую систему ГМ искусственных биоинженерных имплантируемых устройств (портов, шунтов, катетеров) и в них проводили трансплантации клеточных суспензий для восстановления функций поврежденного мозга. Все варианты нейробиоинженерной реконструкции мозга человека мы называли тогда очень модным в микрохирургии того времени термином — нейробиоинженерная пластика.
Со временем термин «нейробиоинженерия» трансформировался в интервенционную биоинженерию мозга и тканевую инженерию мозга. Это изменение клинического содержания термина было связано, с одной стороны, с появлением новых малоинвазивных технологий, обозначаемых как интервенционная кардиология и интервенционная неврология, а с другой стороны — с появлением в США инновационных работ братьев Ваканти (Vacanty) из Бостонского университета США по тканевой инженерии органов и тканей. Именно братья Ваканти постулировали путь применения различных биополимерных матриксов и каркасов, cодержащих стволовые клетки, факторы роста и другие биологически активные вещества, для реконструкции органов, тканей и спинного мозга у экспериментальных животных. Чарльз Ваканти первым показал возможность сочетанного применения стволовых клеток и биодеградируемых полимеров для нейрореставрации поврежденного мозга и определил этот новый методологический подход как тканевую инженерию мозга.
Научный прорыв американских ученых в конце XX в. показал, что существующая в неврологии догма о невозможности восстановления нейронов поврежденного мозга, установленная нобелевским лауреатом Рамон-и-Кахалем еще в начале XIX в., оказалась методологически ошибочной. За последнее десятилетие уходящего XX в. было показано и научно доказано в многочисленных исследованиях нейроученых во всем мире, что головной и спинной мозг человека и млекопитающих в определенных условиях способен к регенерации и восстановлению. Впервые об этом мировая научная общественность открыто заявила как об установленном новом научном факте в 2005 г. на Первом международном научном конгрессе, проводимом IANR (International Association of NeuroRestoratology). Нейроученые из 30 стран мира (неврологи, нейрохирурги, нейрофизиологи, нейробиологи и др.) в 2015 г. приняли Всемирную декларацию, в которой провозгласили, что «нервные клетки способны восстанавливаться», если им «будут созданы определенные условия для регенерации».
С этого времени начинается новая эра мировой нейробиоинженерии. Впервые высказанное во всеуслышание, общественно декларируемое и поддержанное мировым научным сообществом нейроспециалистов научное мнение о возможности нейрорегенерации стало авторитетным для значительного количества нейроспециалистов, занимающихся проблемами изучения регенерации и восстановления поврежденного мозга (Нuang, 2019). И хотя многие научные группы из академических нейрохирургических и неврологических учреждений в России и в Европе были несогласны с основными тенденциями, происходящими в нейронауках, в научных представлениях большинства нейроученых в мире произошел коренной перелом. Целая армия молодых исследователей головного и спинного мозга человека занялась изучением этих вопросов и увлеклась нейроинженерией. Существенный вклад в развитие этого направления оказало историческое решение президента США Барака Обамы открыть в 2008 г. государственное финансирование исследований в области стволовых клеток, в т.ч. в области нейроисследований, которое было ранее остановлено указом предыдущего президента США Джорджа Буша, поддержанного Конгрессом США.
Журнал «Сучасна освіта» №4 (77) от 2011 г. называет наступившее время «эрой технарей». Он показал, что время, когда самой популярной профессией разных мастей был управленец или менеджер, уходит в прошлое. Тренд на модернизацию всех отраслей промышленности ускоряет наступление «эры инжиниринга» (инжиниринг — комплекс инженерно-консультационных услуг коммерческого характера по подготовке и обеспечению непосредственно процесса производства). Сегодня действительно возникают новые профессии на стыке наук, требующие серьезных профессиональных знаний в различных областях наук о жизни. Они будут особенно полезны той категории наших читателей и молодых ученых, кто испытывает интерес к нескольким областям знаний и не может сделать окончательный выбор в пользу одной из них. Может быть, именно описываемые специальности помогут им реализовать свой потенциал в полной мере. Одна из таких специальностей будущего — это профессия нейроинженера.
Современные нейроинженеры подходят к изучению человеческого мозга с практических, даже правильнее сказать, с технических позиций: они изучают прежде всего то, как кодируется и передается информация в различных отделах мозга, отвечающих за сенсорное и моторное восприятие, как эта информация искажается при патологических изменениях в мозге и как ею можно манипулировать искусственным образом — при помощи разных информационных способов, техник и микроскопических механизмов. Например, ученым из Массачусетского технологического института удалось научиться программировать мозг вспышками света через мозговой имплантат-светодиод. Предполагается, что таким образом можно будет лечить самые тяжелые заболевания — от болезни Паркинсона до клинических депрессий. Особенные усилия направлены на изучение того, как функционирует зрение.
Итак, название следующей новомодной специализации и профессии будущего — нейроинженер — говорит само за себя. Эта специальность совместит в себе биологические основы нейронаук, технической мысли ученых точных наук и завершится созданием новых технических устройств нейроуправления и нейрореставрации. «Зачем изобретать велосипед, — скажете вы, — Создатель ведь давно обо всем позаботился». Однако другая народная мудрость гласит: «Изобретать велосипед полезно — ведь попутно можно изобрести что-то еще!» Именно этим лозунгом и руководствуется мировая нейроинженерия. Специалисты в этой области изучают возможность кодировки и передачи информации в определенных отделах головного мозга и между ними и придумывают разные механизмы и способы для манипуляции и биоуправления этим сложным процессом. Считается, что таким образом людей можно будет лечить от многих тяжелых заболеваний, таких как болезнь Паркинсона, клиническая депрессия, болезнь Альцгеймера. Специалистов по нейроинженерии в нашей стране пока не готовят, поэтому обучаться придется в Америке и Канаде.
Нейроинженерия — молодая, но невероятно быстро развивающаяся отрасль высокотехнологичной медицины. Как мы уже отмечали выше, первый журнал, посвященный исключительно нейроинженерии, появился только в 2004-м и тогда же была собрана первая международная конференция, но уже сегодня, в 2021 г., нейроинженеров готовят во многих университетах США. Средняя ожидаемая зарплата нейроинженера — около 200 тыс. долл. в год. Еще популярнее может стать профессия нейрофизиолога или, правильнее сказать, нейротехнолога, хотя она ближе к косметологии и индустрии красоты. Здесь речь идет не о враче функциональной диагностики, занимающемся клинической нейрофизиологией и постоянным снятием и расшифровкой электроэнцефалограммы (ЭЭГ) или электронейромиограммы (ЭНМГ) у пациентов, а о специалисте-нейроученом, который способен понять физиологию и технические условия работы различных отделов ЦНС человека и управлять ими через систему информационных кодов и информационного картирования различных информационных уровней нервной ткани человека. То есть мы говорим о профессионале, способном к снятию геномной и постгеномной информации (транскриптомики, протеомики, секретомики, метаболомики и т.д.), регистрации и регуляции специализированной биофизической информации от различных участков нервной ткани головного и спинного мозга и способном ее при необходимости перепрограммировать и перенаправить в нужную сторону через систему электронных микрочипов, нанотрубок или нейропротезов. Это будет высший пилотаж нейрофизиологии и нейробиоуправления функциями мозга с использованием нейроинженерных программных средств и инструментов.
Другим направлением подготовки клинических нейроинженеров станут врачи-нейрохирурги, обладающие техническими знаниями и технологическими навыками имплантации электронных устройств и микрочипов в зоны повреждения головного и спинного мозга человека и способные восстанавливать проведение нервного импульса между «живыми» и «неживыми» функциональными элементами и структурами нервной ткани без потери качества проводимого нервного импульса. Для этого нужно иметь новое фундаментальное понимание информационно-коммутационного устройства головного мозга человека и млекопитающих, а также навыки микронейрохирурга и нейроинженера-нейротехнолога.
Еще одним направлением подготовки нейроинженеров станут дистанционные бесконтактные мультиволновые реконструкции головного и спинного мозга под контролем магнитно-резонансной томографии (МРТ) и других аппаратных средств лучевой диагностики, которые станут реальной альтернативой современным нейрохирургическим операциям. Первые варианты подобного нейробиоинженерного подхода мы продемонстрируем далее, в отдельной главе о дистанционной бесконтактной мультиволновой радионейроинженерии нервной ткани человека.
В последние годы наряду с термином «нейроинженерия» в средствах массовой информации (СМИ) очень широко используется термин «нейротехнологии». Особенно актуален этот термин стал после создания и запуска в 2012 г. 10-летнего международного европейского научно-исследовательского проекта Human Brain Project, разработанного по инициативе Еврокомиссии, стоимостью в 1,2 млрд евро, где термин «нейротехнологии» обрел новое биологическое звучание, новый научный смысл и биотехнологическое содержание. Под нейротехнологиями 300 ведущих европейских нейроученых стали понимать различные технологические стратегии изучения мозга, диагностики и лечения неврологических заболеваний и психических расстройств, а также способы нейроинженерной реставрации и восстановления нарушенных функций поврежденного мозга человека. Термин «нейротехнологии» стал настолько наукоемким и всеобъемлющим, что он стал не только нейробиологическим, биомедицинским и биотехнологическим, но и инженерно-техническим и социально-экономическим. С одной стороны, под нейротехнологиями стали понимать природоподобные биоинженерные, нейроматематические и вычислительные технологии, а также работу с большими объемами данных (big data), а с другой стороны, нейротехнологиями стали называть создание нейроморфных вычислительных суперкомпьютеров и робототехники, а также нейроинтерфейсов между мозгом человека и компьютером (Каплан и др., 2018). Разработка и создание систем искусственного интеллекта тоже определена учеными как одна из самых продвинутых нейротехнологий. Таким образом, термин «нейротехнологии» стал собирательным образом всех инноваций и новаторских решений в области изучения мозга человека, реконструкции поврежденного мозга, восстановления нарушенных функций и создания природоподобных нейроморфных систем вычислительной техники, имитирующих устройство и принципы работы мозга человека. Именно нейротехнологии должны будут в 2022 г., по завершении глобального Human Brain Project, дать возможность европейцам создать искусственный интеллект на базе нейроморфного суперкомпьютера нового поколения и новое понимание устройства мозга человека. Впервые именно в свете нового понимания устройства мозга человека нейроученые из Евросоюза стали говорить о создании теоретической неврологии, которая сможет дать методологическое и теоретическое обоснование созданию принципиально новых нейротехнологий. Сегодня научный прорыв и победа в области развития и создания нейротехнологий должны будет обеспечить победителям мировой гонки технологий технологическоее превосходство перед противниками и партнерами.
Принципиально новая постановка проблемы мирового лидерства через технологическое превосходство и нейротехнологии и амбициозность замысла европейцев ошеломили половину мира и в первую очередь их партнеров из США. В ответном шаге американской администрации уже через год (2013) на эту стратегическую инициативу европейского научного сообщества была принята ответная инициатива американских ученых под названием Brain Initiative с общим финансированием в 3 млрд долл. США, где основной упор в разработках и исследованиях также был сделан на создание инновационных, энергетически малозатратных или подобных по энергозатратам и эффективности мозгу человека нейротехнологий. Флаг развития нейротехнологий, поднятый европейцами и учеными из США, подхватили японские политики и ученые, а затем китайские ученые и руководители коммунистической партии Китая, которые решили вложить в нейротехнологии количество юаней, эквивалентное 10 млрд долл. США.
Сегодня гонка вооружений XX в. стала соперничать с гонкой технологий XXI в. и стало очевидным, что победителем в первой станет явный фаворит во второй. Нейротехнологиям отводится центровое место в системах обороноспособности государств, создании нейроморфных супервычислителей, искусственных интеллектуальных роботизированных систем вооружения и нейроподобных технологий защиты от психотронного воздействия на армии разных стран. Под нейротехнологиями в настоящее время в зарубежных научно-исследовательских проектах понимают научные исследования, биомедицинские и вычислительные технологии в области создания нейроморфных природоподобных вычислительных суперкомпьютеров и накопителей информации, разработку и создание нейроинтерфейсов или устройств для осуществления взаимодействия между мозгом человека и компьютером, нейроинтерфейсов для управления оружием, техникой, роботизированными устройствами и даже бионическими протезами конечностей. К нейротехнологиям также относят технологии нейросетевой обработки и хранения больших объемов биологической и социальной информации, разработку и создание инновационных клеточных и биоинженерных технологий диагностики и лечения целого ряда неизлечимых неврологических заболеваний в виде основных нервных болезней цивилизации: болезнь Альцгеймера, болезнь Паркинсона, болезнь Хантингтона, системная корковая атрофия и слабоумие, боковой амиотрофический склероз, генетические нервные болезни и т. д. Эти технологии предполагают создание ультрасовременных способов молекулярно-биологической диагностики целого ряда психических расстройств и нервных болезней на основе геномных (геномики) и постгеномных (транскриптомики, протеомики, метаболомики, секретомики) биотехнологий. Нейротехнологии ставят целью возможность управления функциями головного мозга, памятью человека и нейролигвистического перепрограммирования личности человека. Поэтому в этой связи нейроинженерия — это больше инструментальное и программное обеспечение для реализации стратегических замыслов путем предлагаемых и планируемых воздействий на головной мозг человека с целью управления его функциями. Реализация этого замысла возможна только путем создания нейротехнологий, обеспечивающих инсталляцию новых функций и возможностей мозга и возможность их практической реализации у человека.
Существенным компонентом современной нейроинженерии является нейрокибернетика, и эти термины нельзя путать или отождествлять. В интернете в статье «Элементы кибернетики нервной системы» (https://lektsia.com/6xa917.html) идет серьезный анализ нейрокибернетического нейроинженерного направления в нейронауках. Нейрокибернетика, или кибернетика нервной системы, — наука, изучающая процессы управления и связи в нервной системе. Такое определение предмета и задач кибернетики нервной системы позволяет выделить 3 ее составных компонента (раздела): организацию, управление и информационную деятельность. Именно поэтому понимание основ нейрокибернетики позволяет строить искусственные нейроинженерные устройства и нейробиотехнологии. В сложных полифункциональных интегративных системах мозга невозможно раздельное функционирование элементов организации, управления и информационной деятельности, они тесно связаны и взаимообусловлены. Эти кибернетические принципы устройства ЦНС и должна моделировать нейроинженерия в своих устройствах и нейроинтерфейсах. Организация нервной системы во многом предопределяет механизмы управления и эффективности передачи и переработки информации. Управление модифицирует механизмы организации и самоорганизации, обеспечивает эффективность и надежность информационной функции системы. Информационная деятельность является обязательным условием совершенствования процесса организации, управления как оперативный прием эффективного воздействия и целенаправленного видоизменения.
В центре внимания теории организации и самоорганизации в нейрокибернетике лежит представление о системных свойствах конструкций мозга на разных морфологических и эволюционных уровнях устройства нервной системы. Ведущим свойством системы является организация. Система — совокупность элементов, где конечный результат кооперации проявляется не в виде суммы эффектов, составляющих элементы, а в виде произведения эффектов, т.е. системность как характерное свойство организованной сложности предполагает неаддитивное сложение функций отдельных компонентов. Объединение двух и более элементов в системе рождает новое качество, которое не может быть выражено через качество составляющих компонентов.
Отдельный нейрон является носителем свойств, позволяющих ему интегрировать влияние других нейронов, строить свою активность на основании оценки результатов интеграции. С другой стороны, на основе таких свойств происходит объединение индивидуальных нейронов в системы, обладающие новыми свойствами, отсутствующими у входящих в их состав единиц. Характерной чертой таких систем является то, что активность каждого составного элемента в них определяется не только влияниями, поступающими по прямым афферентным путям каждого элемента, но и состоянием других элементов системы. Свойство системности в нервных образованиях возникает тогда, когда деятельность каждой нервной клетки оказывается функцией не только непосредственно поступившего к ней сигнала, но и функцией тех процессов, которые происходят в остальных клетках нервного центра (Костюк, 2010; Eichenlaub et al., 2020; Willett et al., 2020).
Оптимальная организация нервных конструкций обычно сочетается со значительной структурой или функциональной избыточностью, которой принадлежит решающая роль в обеспечении пластичности и надежности биологической системы. Нервная система животных и человека — самая совершенная по структуре система, разнообразие форм и размеров клеток которой не имеет аналога ни в какой другой физиологической системе биологического организма. Все многообразие и сложность форм нервных клеток в разных структурах и органах есть результат и основа богатого разнообразия функций элементов ведущей регуляторной системы организма. Часто наблюдаемые петлеобразные структуры в архитектонике волокнистых структур мозга (боковые и возвратные ветви аксонных отростков), обеспечивающих возможность циркуляторного прохождения информации, очевидно, выполняют функции механизма обратной связи, играющей столь важную роль в кибернетике нервной системы.
Важным моментом организации и самоорганизации служит системообразующий фактор — результат действия (Анохин, 1968). Реальной физиологической системой нейронов является комплекс нервных клеток, у которых взаимодействие и взаимоотношения приобретают характер взаимодействия элементов на получение фиксированного полезного результата.
Суть процесса управления заключается в том, что из множества возможных воздействий отбираются и реализуются те, которые направлены на поддержание, обеспечение рассматриваемой функции органа. Управление представляет собой информационный процесс, предусматривающий обязательность контроля за поведением объекта благодаря кольцевой, или круговой, передаче сигналов. Это предусматривает два вида передачи информации: по цепи управления от регулятора к объекту и в обратном направлении — от объекта к регулятору, при помощи обратной связи, по которой поступает информация о фактическом состоянии управляемого объекта.
Обратная связь бывает двух видов: положительная и отрицательная. В случае положительной обратной связи сигналы, поступающие на вход системы по цепи обратной связи, действуют в том же направлении, что и основные сигналы (воздействие среды). Положительная обратная связь ведет не к устранению, а к усилению рассогласования в системе. Отрицательная обратная связь обеспечивает выдачу управляемому объекту со стороны управляющего устройства команд, направленных на ликвидацию рассогласования действия системы (отклонений параметров системы от заданной программы). Стабилизирующая роль отрицательной обратной связи проявляется в том, что дополнительные сигналы, поступающие на вход системы по цепи обратной связи, действуют на систему в направлении, противоположном основному воздействию на объект.
В нейронных системах мозга встречаются два типа регулирования: управление по отклонению и управление по возмущению. При управлении по отклонению, или по рассогласованию (величина ошибки), в качестве запускающего воздействия служит само отклонение регулируемой величины. В этом случае независимо от причины рассогласования возникшее отклонение вызывает регуляторные воздействия, направленные на его ликвидацию. Если этого окажется недостаточно для устранения эффекта возмущающего стимула, система мобилизует дополнительные механизмы обеспечения гомеостаза. Такой способ регулирования является наиболее простым и встречается в основном в примитивных формах организации нервной системы, на низших уровнях ее конструкции.
Ведущая роль нервной системы в организме определяется ее управляющей функцией по отношению к другим органам и тканям, обеспечиваемой благодаря способности воспринимать и перерабатывать информацию в целях оптимального приспособления организма к стохастической внешней среде. В процессе эволюционного филогенетического совершенствования нервных структур как ведущей информационной системы организма конструктивные особенности мозга определяют высокую адекватность (оптимальность) его коммуникационных систем: на мультиклеточном уровне центральные нервные образования вместе с рецепторами и эффекторами составляют информационное поле с богатейшими возможностями для обработки сигналов.
Считается, что основным носителем информации в нервных клетках являются импульсные потоки, состоящие из отдельных импульсных сигналов стандартной амплитуды — распространяющихся потенциалов действия. Центральным моментом в информационной деятельности нервных структур является кодирование, суть которого составляет процесс преобразования сообщения из одной формы в другую. Трансформированная в рецепторах информация подвергается в организме многократным дальнейшим превращениям на разных стадиях и уровнях организации нервной системы. Тонкая электрохимическая физиология рецепторов и синаптических соединений характеризует физический субстрат элементарных информационных превращений. В качестве кодирующих информацию элементов в самом импульсном потоке может быть любое статистическое измерение, характеризуемое определенным законом изменения в связи с различной интенсивностью раздражения.
В деятельности нервной системы значительное место занимают способы и методы пространственного кодирования информации, обеспечивающие высокую экономичность передачи информации о пространственном расположении, характеристике стимулов. Формы пространственного кодирования информации в дополнение к различным видам временного кодирования (интервальное, частотное и др.) существенно повышают информационную емкость нервных структур.
Сравнение суммарного информационного потока, поступающего в живой организм через органы чувств (3 × 109 бит/с), с количеством информации, необходимой для принятия целесообразного решения (20–25 бит/с), указывает на высокую избыточность входной информации, наличие специфических механизмов, уменьшающих количество информации по мере ее продвижения в структурах анализатора (от рецепторов к центральному отделу анализатора).
Из окружающей среды в организм в среднем поступает до 100 бит информации в секунду, но благодаря селективным свойствам сенсорных систем в мозг поступает лишь 10 бит информации. В процессе адаптивного приспособительного поведения животного организма значительная роль принадлежит сенсорным реле — промежуточным узловым структурам сенсорных систем. Они выполняют функции выявления во входных посылках физиологически важной информации. В результате в сенсорных реле, образующих фильтрующие (перекодирующие) центры, происходит регулирование суммарного входного информационного потока в соответствии с требованиями других отделов нервной системы и всего организма в целом (Bryukhovetskiy, 2015).
Мы так подробно остановились на современном понимании устройства головного мозга человека и существующих в научной литературе кибернетических принципах работы мозга, чтобы вы могли сравнить их в дальнейшем с нашим авторским пониманием предложенного информационно-коммутационного устройства и увидеть кардинальные их отличия в теории, в эксперименте и на практике.
Глава 2. Существующие нейротехнологии современной нейроинженерии
У нас сложилось такое впечатление, что эта глава монографии во многом будет выглядеть достаточно популистской и похожей больше на главу научно-популярного бестселлера, чем на главу классической научной монографии. Но таково реальное состояние этой науки сегодня, когда в средствах массовой информации (СМИ) и интернете мы ежедневно узнаем «потрясающие» мировые новости об этой новой области научных исследований и они действительно больше похожи на научно-фантастический блокбастер из Голливуда, чем на реальные научные изыскания и достижения, особенно когда эти новости приходят от главного поставщика мировых научных новостей в СМИ и интернете, а именно от DARPA USA (Агентства перспективных исследований Министерства обороны США). На поверку зачастую понять из подаваемой DARPA информации, где есть научный прорыв, а где — явный вымысел или целенаправленный научный обман, практически невозможно.
Как мы уже отмечали в предыдущих главах, это, возможно, связано с большой секретностью основных научных программ и активно применяемых нейротехнологий в области нейроинженерии в Европе, Китае и США и с отсутствием в открытой печати реальных результатов этого очень закрытого научного направления исследований. Мы судим о достигнутых результатах мировой нейроинженерии, анализируя в основном анонсы о нейроинженерии в открытых источниках зарубежных СМИ, статьях в открытых научных журналах и изучая интервью ведущих специалистов этой отрасли, данные ими различным популярным журналам, или по отдельным выступлениям журналистов в СМИ. Периодически именно нейроинженерия приносит основные сенсационные сообщения о «научных прорывах» и уже имеющихся «грандиозных успехах» в этой области нейроисследований, но достигнутых преимущественно американскими учеными-исследователями. Но, к сожалению, по прошествии определенного времени вдруг становится ясно, что никакой сенсации-то и не было, а это было желание обратить на себя внимание отдельной группы американских или европейских нейроспециалистов, «пропиарить» свои разработки или просто научные задумки для получения новых научных грандов от государства или частных денег и закрытого финансирования от венчурных фондов на нейроисследования. При этом большинство этих информационных сообщений является информационными «вбросами» или желанием ученых выдать желаемое за действительное или просто показать своему государству, финансирующему эти исследования многомиллионными грантами, значимость их результатов и уровень якобы уже достигнутого ими научного прорыва.
Последние годы фейковые (лживые) научные факты об очередных научных прорывах западных ученых стали так же обычны, как и фейковые новости в современной международной политике и экономике. Однако глубокий и системный анализ этой информации может дать определенные и достаточно реальные представления о существующем положении дел в этом направлении. Давайте попробуем в этом море научных и псевдонаучных фактов выявить основных научных лидеров-теоретиков в современной нейроинженерии и определить ведущих практиков-нейроинженеров, которые реально или фиктивно определяют современные достижения этих наук и их будущее. Давайте также попытаемся понять, что есть реальность, а что есть вымысел из представленного калейдоскопа сенсационных научных фактов, обнаруженных нами на просторах страниц научных журналов, средств массовой информации и интернета. Какие нейротехнологии сегодня применяет современная нейроинженерия и что ее ждет в недалеком будущем? Ведь будущее рождается сегодня, и его надо только суметь разглядеть в этом море проходящей и зачастую абсолютно пустой информации.
Очень важно понять, какие научные теории и какое методологическое и теоретическое обоснование лежат в основе разрабатываемых нейротехнологий, зачем это делается и кто «заказывает музыку» в разработке этих направлений научного прогресса. Остановимся на основных нейротехнологиях и фундаментальных нейроисследованиях, определяющих современный биотехнологический ландшафт мировой нейроинженерии и нейротехнологий.
Нейротехнологии интерфейса «мозг — компьютер» (нейроинтерфейс). Одной из самых востребованных, самых актуальных и глобально разрабатываемых в мире нейротехнологий в современной нейроинженерии являются технологии взаимодействия «мозг — компьютер», их другое название — технологии нейроинтерфейса (Hosman et al., 2019; Vilela, Hochberg, 2020). Вокруг этой научной тематики нейроинженерии сегодня накопилось очень много всего необычного, почти фантастичных фактов. Ситуация вокруг этих нейротехнологий активно «подогревается» выходом в свет ряда научно-фантастических, документальных и художественных фильмов, типа «Матрицы», где возможности этих технологий поражают воображение обычного человека и даже нейроученого. Технология нейроинтерфейса, в недалеком приближении, предполагает возможность установления устойчивой информационной (прямой и обратной) связи между компьютером и головным мозгом человека. На первый взгляд это довольно просто, но на самом деле это информационное взаимодействие не удалось пока осуществить никому, и ниже мы это попытаемся показать на примерах.
Пионером реального создания научно-практической технологии нейроинтерфейса у человека считается Джон Донохью (Dr. John Donoghue) (рис. 1). Этот нейроученый из Brown University из Providence (Rhode Island) имплантировал нейроинтерфейс впервые в мире пациенту-спинальнику Мэтью Найджелу (Matthew Nagel), получившему ножевое ранение спинного мозга в 2001 г. Он осуществил имплантацию нейроинтерфейсной системы BrainGate Neural Interface system. В результате этого сложнейшего нейрохирургического вмешательства на человеке всему миру была продемонстрирована реальная возможность «управления мыслью» автоматизированного и роботизированного устройства (цитата). Эти сенсационные данные были опубликованы 13 июля 2006 г. во всемирно известном научном журнале Nature №442 на с. 164–171. Эта «научная сенсация» вызвала взрыв интереса к этой тематике в научной общественности и огромный научный резонанс среди ученых и привела к открытию многомиллионного финансирования подобных исследований в США и Европе. Пресса ликовала, были показаны фотографии «революционного прорыва» в нейронауках (рис. 2). Джон Донохью стал мировой научной знаменитостью. Но что же дальше? Что дал человечеству этот уникальный и очень опасный эксперимент на инвалиде-спинальнике? Что дал этот эксперимент самому пациенту? Давайте посмотрим на результат этого научного прорыва через годы после этой новаторской операции!
С момента публикации этого фантастического научного факта до сегодняшнего дня уже прошло более 15 лет, и что же мы знаем про этот выдающийся эксперимент сегодня? Да ничего кроме того, что он был пионерским и «первым в мире нейроинтерфейсом», выполненным на человеке! Мы полагаем, что никакого реального нейроинтерфейса осуществлено не было! Очевидно, что была выполнена достаточно бесполезная и достаточно опасная операция на мозге человека без конкретного конечного результата. Была получена «сенсация века», и был удовлетворен научный интерес отдельного ученого, и не более того. Где практическая реализация этого «революционного мирового открытия» в современных нейронауках? Ее так и не представлено! К сожалению, в открытых источниках мы не можем найти публикаций об отдаленном результате клинического применения столь фантастического открытия в нейронауках, сделанного более 15 лет назад. Да и был ли установлен нейроинтерфейс между мозгом пациента и компьютером, сегодня представляется достаточно сомнительным. При этом был очевиден «революционный посыл» первого прецедента создания нейроинтерфейса на людях. Был сделан первый эксперимент на человеке, который ничего не дал, а лишь показал нашу несостоятельность перед решением этой проблемы на тот период развития науки и технической мысли. Скольким инвалидам-спинальникам была дана надежда на возможность исцеления и улучшения качества своей жизни? Таких данных нет. Но и реального результата эксперимента пока нет, а сенсация оказалась фейковой и искусственно раздутой прессой и самими разработчиками.
Чем же сегодня занимаются «пионер нейронаук» и «создатель нейроинтерфейса» нейроученый John Donoghue и его коллектив ученых? Вот как описываются сегодняшние (начало 2021) достижения и результаты этих ученых на сайте Института исследований мозга Карни Университета Брауна: «Работая на переднем крае нейроинженерии и нейротехнологий, исследователи из Института исследований мозга Карни делают огромные успехи в разработке и развертывании устройств, которые взаимодействуют с мозгом, чтобы лучше понять работу мозга и помочь людям с параличом и другими расстройствами нервной системы. Истоки нейроинженерии в Университете Брауна лежат в проекте, известном как BrainGate. Основываясь на ранних фундаментальных исследованиях, проведенных в лаборатории директора — основателя Института Карни Джона Донохью о том, как мозг контролирует движение, группа исследователей, выходящих за рамки границ областей исследования, создала и протестировала систему интерфейса „мозг — компьютер“, которая обещает восстановить функции и независимость для лиц с параличом». То есть и через 15 лет после их сенсации эта технология все еще обещает что-то восстановить у парализованного пациента. При этом исследователи под руководством Джона Донохью опубликовали большое количество фундаментальных исследований на эту тему (Ajiboye et al., 2017; Vargas-Irwin et al., 2018; Milekovic et al., 2018; Eichenlaub et al., 2020; Willett et al., 2020), но реальных результатов разработанного ими нейроинтерфейса так и нет.
Почему столь громко разрекламированный и столь сенсационный для всего мира эксперимент на человеке проф. John Donoghue и его коллег не имеет логического продолжения в клинике и на практике уже столько лет? Оказалось, что все не так просто с этими нейроинтерфейсами. Возможно, что причиной неудач являются ошибки в теории и методологии понимания информационного устройства головного мозга человека и млекопитающих, что не позволяют решить столь необходимую задачу присоединения живого мозга к неживому компьютеру.
Другим из самых известных и самых продвинутых специалистов в области нейроинтерфейсов является американец венгерского происхождения Эндрю Шварц (Andrew Shwarz) (рис. 3). В рамках специального проекта DARPA Министерства обороны США Э. Шварц ведет разработку имплантируемого интерфейса «мозг — компьютер» с объемом финансирования в 500 млн долл. США. Программа шла 5 лет на обезьянах и уже несколько лет идет на людях (рис. 4). Основной принцип информационного подключения к мозгу человека эта команда пытается осуществить путем имплантации в кору головного мозга решетки из микроэлектродов и попытки снятия внутримозгового сигнала из нервной ткани и создания роботизированного устройства самообслуживания инвалида и программного обеспечения для него путем управления его мыслями (рис. 5).
По данным этой команды разработчиков, им удалось «зарегистрировать моторный внутримозговой сигнал» с прецентральной извилины головного мозга, куда была имплантирована решетка микроэлектродов. Более того, полученный управляющий сигнал удалось не только зарегистрировать в моторных центрах коры головного мозга, но и «послать его обратно». Исследователи из Питтсбурга (США) пришли к выводу, что мыслительными командами пациент-инвалид якобы способен управлять самостоятельно «силой мысли» и выполнять простые моторные действия роботизированным устройством после небольшого периода обучения. Проф. Andrew Shwarz, очень увлеченный и талантливый ученый-нейробиолог, — человек, который верит в то, что он делает, но реальных результатов он также не может представить, и это, на наш взгляд, связано не с только с проблемой нейрофизиологии и нейробиологии, сколько с устаревшей методологией оценки информационной составляющей работы мозга во всем мировом научном процессе нейронаук и с крайне сложным и высокотехнологичным математическим и компьютерным обеспечением подобной работы. Нам показалось, что уникальное математическое программное обеспечение этих исследований в лаборатории проф. Эндрю Шварца значительно превосходит современные познания и научные представления в понимании нейрофизиологии работы мозга человека, и оно само доделывает и додумывает то, что головной мозг неспособен предоставить для обработки и анализа. В целом работа математиков и программистов этой группы достойна уважения и восхищения!
Главная методологическая ошибка проф. Эндрю Шварца, на наш субьективный взгляд, заключается в его устаревших теоретических нейрофизиологических представлениях об устройстве мозга человека и в неверных информационных принципах его работы. Он преимущественно опирается на теоретические данные русских нейроученых начала XX в., которые были, несомненно, революционными в свое время (конец XIX — начало XX в.), но сегодня их теоретические воззрения больше тормозят научный прогресс, чем его ускоряют. Даже будучи патриотом своей страны (России), надо признать, что отсутствие новой информационной теории устройства мозга и информационных принципов его деятельности стали основной причиной научного тупика в проблеме нейроинтерфейса! Однако свои неудачи в создании полноценного интерфейса эти исследователи видят в проблеме недостаточного качества и количества микроэлектродов и в несовершенстве программного обеспечения их компьютеров. Но это абсолютно не так! На самом деле проблема их лежит в ошибках методологии и устаревших теоретических научных представлениях об устройстве мозга человека и в непонимании информационно-коммутационных принципов функционирования головного мозга.
Мы преклоняемся перед тем колоссальным объемом экспериментальных научных исследований, которые сделала команда проф. Andrew Shwarz и лично он сам. Но, на наш взгляд, сама идея имплантации в мозг любого инородного тела с целью считывания с его нервной ткани информации представляется ошибочной и порочной в принципе. Проиллюстрируем ее ошибочность на бытовой аналогии. Давайте сравним головной мозг человека с коммутатором на современной автоматизированной телефонной станции (АТС). В нем, как и на современной АТС, идет коммутация поступающей информации и ее маршрутизация абонентам. Если вы придете к коммутатору на телефонной станции и вставите в него два лома, к ним присоедините наушники и попытаетесь прослушать телефонные разговоры, то у вас ничего не выйдет. И это очевидно! Так ведь и с головным мозгом аналогичная ситуация! Вы берете и вставляете грубые инородные тела в нервную ткань — «коммутатор и маршрутизатор» информации в голове человека — и убеждены, что сможете контролировать и регистрировать все процессы мыслительной деятельности, которые якобы происходят в ней и в коре головного мозга. Но это явно не так. Более того, нейрохирургам и неврологам хорошо известно, что нервная ткань мозга всегда отторгнет любое инородное тело, имплантированное в него, путем формирования ликворной кисты или рубца, а также путем формирования атрофии нервной ткани. В итоге вам нужно будет менять локализацию электродов, при этом разрушая в новом месте здоровую нервную ткань головного или спинного мозга млекопитающего или человека. Удивительно, но проф. Эндрю Шварц это прекрасно осознает и понимает, но он убежден, что вся проблема исключительно в количестве и в размерах электродов и биосовместимых материалов, из которых они сделаны.
Подобные работы в этом направлении проводят другие исследователи (Reid R. еt al., 2007). Результаты своей работы они опубликовали в статье A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System в журнале Ieee Journal of Solid-state Circuits (Jan. 2007. Vol. 42, №1), в которой они также представили свой микроэлектродный инструментарий и нейральный микрочип для создания нейроинтерфейса (рис. 6).
Другой, не менее интересный ученый, работающий в области нейроинтерфейса в нейроинженерии, — доктор Барклей Моррисон (Dr. Barclay Morrison) (рис. 7) и его команда заслуживают пристального внимания. Они занимаются инновационной разработкой в современной нейробиоинженерии, сущностью которой является создание взаимодействия между мозгом и компьютером путем подключения к мозгу с помощью нанотрубок (medforce.ru›nanotexnologii-v-medicine/…).
Понимание учеными протоколов работы распределенной нейронной сети было облегчено появлением микроэлектронных матричных записывающих устройств (MЗУ), способных к записи активности множества нейронов одновременно. Эти исследователи убеждены, что одновременная запись с многих локализаций в ткани может открыть код действий высшей мозговой деятельности. Проф. Барклей Моррисон (prof. Barclay Morrison) в 2009 г. сообщил, что они стали использовать новый тип MЗУ с электродами, сделанными не из металла, а из вертикально ориентированных углеродных нанотрубок (VACNF). Они показали, что эти устройства могут выполнять стандартные процедуры электрофизиологического исследования на уровне и выше уже существующих коммерческих MЗУ. Исследователями был показан потенциал электродов, основанных на нанотрубках, для установления интерфейса с легковозбудимыми клетками (Resident Neuroelectrochemical Interfacing Using Carbon Nanofiber Arrays). Углеродные нанотрубки — электрохимически активные структуры, которые могут быть объединены в параллельные матрицы, используя обычные инструменты и подходы микроинженерии. В противовес к стандартным плоским матрицам, нанотрубки обеспечивают новые неплоскостные высокодифференцированные структуры, которые предоставляют уникальные возможности для исследования вне- и внутриклеточных процессов. Ранее было продемонстрировано, что эти структуры могут создавать интерфейс с индивидуальными клетками, но не было известно, возможны ли соединение с интактной тканью и запись потенциалов. Теперь якобы доказательства этому получены, результаты исследования показаны в статье Vertically Aligned Carbon Nanofiber Arrays Record Electrophysiological Signals from Hippocampal Slices. Для своих экспериментов исследователи изготовили устройства, состоящие из 40 VACNF-электродов. Для записи электрической активности была взята ткань области гиппокампа. Производилась запись как обычной деятельности, так и сигналов после раздражения.
Считается, что в области нейроинженерии углеродные электроды имеют несколько потенциальных преимуществ перед другими типами. Наиболее важно, что эти электроды хорошо подходят для электрохимических измерений в нейронном окружении и могут использоваться для мониторинга химических изменений нервной ткани, усиливать способности нейронов к восприятию как электрических сигналов, так и уровня медиаторов и могут привести к разработке и возникновению новых типов нейропротезов.
Результаты исследований, полученные в различных научных лабораториях, показывают, что углеродные нанотрубки (УНТ) могут быть использованы в нейроинженерии и для фундаментальных исследований поведения нервных клеток, и для практического применения — для изучения роста и организации нейронной сети, улучшения эффективности передачи сигналов в нервной системе, создания биосовместимого интерфейса, наноэлектродов.
Несмотря на большой интерес нейрофизиологов, биологов и других исследователей к углеродным нанотрубкам, детали взаимодействия «нейрон — УНТ» пока малоизвестны. Значительный прогресс в этой области достигнут в работах коллектива авторов из Италии и Швейцарии. Ученые в течение 8–12 дней культивировали нервные клетки гиппокампа (гиппокамп — часть головного мозга) крыс на подложках из одностенных нанотрубок (ОСНТ). Для получения подложек раствор нанотрубок осаждали на стекло, где после термообработки образовывалась механически прочная пленка толщиной 50–70 нм. Данные электронной микроскопии показали, что по всей подложке разрослись нейроны, имеющие размеры и морфологию, типичные для здоровых клеток. И не просто разрослись, а тесно соединились с нанотрубками! Детальный анализ с помощью микроскопии более высокого разрешения выявил наличие плотного контакта мембраны нейрона с нанотрубкой, что очень важно для создания интерфейса «нейронная ткань — внешнее устройство». Рост нейронов и образование функциональной сети на ОСНТ указывает на полную биосовместимость этих живых и неживых объектов.
Основной результат работы: в нейронах возникали отклики на внешнюю электростимуляцию, осуществляемую через нанотрубки с помощью подсоединенного к подложке Ag-электрода. Таким образом, нанотрубки — не только хорошая поверхность для выращивания нейронной сети, они могут и способствовать повышению эффективности работы мозга благодаря передаче по ним электрического сигнала.
В последующих экспериментах ученые использовали как одностенные, так и многостенные нанотрубки. Влияние УНТ на функции нейронов исследовали, сравнивая данные для гиппокампальных клеток крыс, культивированных 8–12 дней на УНТ-пленках и контрольных подложках. Материалами контрольных подложек служили оксид индия-олова ITO, имеющий высокую электропроводность, и пептиды — неэлектропроводные, но самособирающиеся в нановолокна, похожие на нанотрубки.
Были использованы стандартные электрофизиологические методы, которые позволили зарегистрировать заметное повышение синаптической активности для УНТ-образцов. Результаты подтвердили специфичность нанотрубок, т.к. ни высокая электропроводность первой контрольной подложки, ни нановолокнистая структура второй не помогли стимулировать нейроны. Далее авторы изучили, как нанотрубка может влиять на электрические свойства отдельного, изолированного от сети нейрона. На основании результатов измерений и математического моделирования они пришли к выводу, что нанотрубка может служить «цепью короткого замыкания» между телом нейрона и отростками, таким образом «приближая» к телу удаленные участки нейрона. Если это действительно так, то можно надеяться, что углеродные нанотрубки помогут не только устранить некоторые заболевания и нарушения нервной системы, но и смогут заметно повысить эффективность работы мозга. Это действительно научный прорыв в создании новых форм «биоконтактов» между живыми и неживыми элементами нервной ткани человека, и это направление заслуживает поддержки и фундаментального изучения.
Исследования американских ученых показали, что годятся не всякие подложки из проводящих УНТ! Оказывается, существует достаточно узкий диапазон электропроводности, оптимальный для эффективного развития нейронов. Авторы работы синтезировали ОСНТ, добавили полиэтиленгликоль (ПЭГ), способствующий их растворению и, соответственно, улучшающий биосовместимость, в УЗ-ванне получили однородную дисперсию и распылением нанесли на горячее покровное стекло однородную пленку. Изменяя толщину пленки, можно было контролируемым образом менять электропроводность. Материалы подложек толщиной 10, 30 и 60 нм имели удельную электропроводность 0,3; 28 и 42 См/см соответственно. Для контроля использовали покровные стекла, покрытые неэлектропроводным полиэтиленимином (ПЭИ), который применяется в нейробиологии для активизации адгезии и роста клеток. Культуры гиппокампальных нейронов крыс выращивали на подложках в течение 3 дней. Нейроны имели флуоресцентную метку, и их рост можно было наблюдать с помощью флуоресцентной и интерференционно-контрастной микроскопии. Цель исследований — понять, какую роль играет «пассивная» проводимость. Выяснилось, что разрастание нейронов на 30- и 60-нанометровых ОСНТ-ПЭГ пленках не отличалось от контроля. А вот для подложки толщиной 10 нм общее разрастание отростков и длина всех ветвей заметно увеличились для каждого нейрона. Эти наблюдения могут объяснить различия в результатах, полученных в ряде экспериментов с электропроводными подложками.
Авторы пока не могут однозначно объяснить, почему наилучший рост нейронов наблюдается на пленке с определенной (низкой) проводимостью. Похожие результаты для другого типа клеток, культивированных на подложках из полипиррола с разной проводимостью, были ранее объяснены модификацией ионного транспорта через клеточную мембрану. Возможны и другие механизмы. Тем не менее сделан важный вывод о влиянии электропроводности подложки на развитие нейронов.
Ученые из лаборатории проф. M. Nicolelis (рис. 8) Университета Дюка (США, Северная Каролина) утверждают, что «разработали алгоритм, позволяющий переводить мысли о движении руки в компьютерный приказ». Одиннадцати пациентам, страдающим болезнью Паркинсона, было вживлено по 32 электрода толщиною с человеческий волос в область головного мозга, якобы отвечающую за управление конечностями. Электроды по беспроводной системе подключались к ПК, на котором больные играли в компьютерные игры. В результате эксперимента ученые считают, что им удалось расшифровать нейронный код, с помощью которого мозг управляет телом. Теперь ученые утверждают, что методика вживления в мозг электронных чипов, усовершенствованная должным образом, через несколько лет позволит людям с нарушенной моторикой мысленно управлять протезами. Был разработан экзоскелет, якобы управляемый мыслями спинальника.
Целью проекта Walk Again ProjectТМ было желание представить первую версию подобного экзоскелета на церемонии открытия чемпионата мира по футболу в июне 2014 г., что и было сделано в присутствии сотен тысяч зрителей (рис. 9). Проект Walk AgainTM, во главе которого стоит Центр нейроинженерии университета Дьюка, c 2013 г. разрабатывает высокоэффективные управляемые мозгом протезы, которые позволят пациентам наконец-то покинуть инвалидное кресло. Walk AgainTM — многонациональный проект, направленный на освобождение парализованных пациентов от бремени их собственных тел с помощью прорыва в сфере неврологии.
За прошедшее десятилетие нейробиологи Центра нейроинженерии Университета Дьюка превратили взаимодействие между мозгом и механизмами (brain-machine interface — BMI) в одну из самых захватывающих и многообещающих областей фундаментальных и прикладных исследований в современной нейробиологии (цитируется из материалов проекта Walk AgainTM).
Проект Walk AgainTM — международный консорциум передовых исследовательских центров всего мира, который представляет новую парадигму для научного сотрудничества академических учреждений, объединяя экспертов в сфере науки и техники для достижения ключевой гуманитарной цели. Благодаря способу связи между тканью мозга и разнообразными искусственными приспособлениями система BMI якобы позволила приматам управлять движениями автоматизированных устройств, включая протезы рук и ног. Для этого они использовали электрическую активность, произведенную сотнями нейронов мозга. Как утверждают разработчики, результаты этих исследований вселяют надежду, что в недалеком будущем пациенты, страдающие от множества неврологических расстройств, приводящих к параличу тяжелой степени, смогут возвратить себе способность двигаться, используя мозговые импульсы для управления сложными нейропротезами. Помимо развития новых технологий, призванных повысить качество жизни миллионов людей, Walk AgainTM привлекает ученых с мировыми именами. Они привносят основные интеллектуальные активы, а также обеспечивают основу для инвестиций в проект, устанавливая четкие цели для достижения фундаментальных успехов в восстановлении полной подвижности пациентов (www.walkagainproject.org; www.tech-life.org).
Вот пример того, как позиционируют свои исследования разработчики современных нейроинтерфейсов: «Если вы думаете, что управление техникой силой мысли возможно лишь в фантастических фильмах, то новейшее изобретение нейроинженеров из американского Брауновского университета сможет вас удивить. Ученые уже воплотили мечту многих людей о том, что можно включить компьютер, микроволновку, стиральную машину и другую технику силой мысли. Они создали устройство, которое считывает и передает сигналы мозга. Такое устройство призвано упростить жизнь тем людям, передвижение которых ограничено». Эта выдержка из СМИ о нейроинженерах из Эрморского университета Атланты (США), которые разработали беспроводной машинно-мозговой интерфейс, с помощью которого в будущем можно будет создать совершенно уникальные протезы, управляемые силой мысли. В Эрморском университете Атланты научили макак-резус мысленно управлять роботизированной рукой. Для этого в область коры головного мозга, отвечающую за движение, было вживлено по 320 электродов. Управляя джойстиком, обезьяны научились шевелить искусственной рукой. А ученые получили возможность изучить потоки электрической энергии, преобразованной из сигналов обезьяньих нейронов. В конце концов животные усвоили, что для того, чтобы двигать конечностями, достаточно подумать об этом. Оказалось, что имплантаты в мозге макак служили им до 3 лет. По-видимому, дальше в мозге формировались рубцово-кистозные изменения и перерождение нервной ткани, и имплантаты было необходимо извлекать из мозга животных.
Из инвазивных нейротехнологий нейроинженерии заслуживают наибольшего внимания еще две. Одна их них — это также нанотехнология для установления интерфейса «мозг — компьютер». Dongjin Seo, Jose M. Carmena, Jan M. Rabaey, Elad Alon, and Michel M. Maharbiz из Департамента электроинженерии и компьютерных наук Helen Wills Neuroscience Institute, University of California, Berkeley, CA в 2013 г. опубликовали статью Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain Machine Interfaces, что в переводе на русский означает «Нейронная пыль: ультразвуковое решение с низким энергопотреблением для хронических интерфейсов машин с мозгом», в которой они предложили схемы наносистемы нейронной пыли, показывающие расположение ультразвукового запрашивающего устройства под черепом и воспринимающие узлы нервной пыли, рассредоточенные по всему мозгу (рис. 10). Авторы считают, что можно предположить, что нейронная пыль с ультрагибким полиимидным «хвостом», заполненным участками записи, обходит пределы достижимого дифференциального сигнала между двумя электродами, размещенными на следе нейронной пыли с параметрами 500 мкВт, 40 пВт.
Еще одна уникальная имплантируемая система BMI «BioBolt», составляющая в диаметре 18 мм, была разработана в Мичиганском университете. Она «вкручивается» в голову, но так, чтобы не проникнуть в кору головного мозга, а лишь легонько касаться ее пленочной микросхемой величиной с ноготь (рис. 11). При этом корпус прибора скрывается под кожей во избежание инфекции. Имплантируемая американская система BioBolt действует подобно микрофону, «прослушивая» возбужденные нейроны и ассоциируя их активность с командами мозга. Эти сигналы усиливаются, фильтруются и оцифровываются. В результате носитель такого чипа может «силой мысли» совершать несложные действия на компьютере. Значительным достижением исследователей стало сокращение энергопотребления устройства за счет того, что кожа головы была использована в качестве проводника при передаче сигнала. В миниатюрных имплантатах именно на радиотрансляцию приходится львиная доля затрат энергии.
Другим направлением создания технологий взаимодействия «мозг — компьютер» стали неинвазивные транскраниальные технологии съема информации о биоэлектрической активности головного мозга человека путем современного электроэнцефалографического оборудования (ЭЭГ). Сегодня создано очень большое количество неинвазивных устройств для подобных нейроинтерфейсов.
Точки практического приложения технологии нейроинтерфейса уже научно-клинически определены и достаточно понятны. Известно достаточно большое количество биологических сигналов, которые можно снять с человека (рис. 13). Существует большое количество современных бионических протезов конечностей, роботизированных устройств, автоматизированных инвалидных колясок, экзоскелетов и других приспособлений для инвалидов, но управление этими вспомогательными устройствами для инвалидов крайне затруднено или абсолютно невозможно из-за отсутствия реального взаимодействия между мозгом и техническим устройством.
Также существует достаточное количество бионических протезов, напечатанных на 3D-принтере, которые выполняют косметические функции или функции «хвата», но они неспособны заменить функции утраченной конечности, т.е. малофункциональны (рис. 14).
Главной задачей практического применения технологии нейроинтерфейса является объединение известных технологий с целью помощи тяжелым инвалидам-спинальникам с нижним парапарезом или даже тетрапарезом конечностей путем создания экзоскелетов для самостоятельного передвижения пострадавших или путем создания бионических протезов, инвалидных колясок и роботизированных систем самообслуживания, управляемых мыслью.
Отдельного внимания среди нейроинтерфейсов последнего поколения заслуживает проект Neurograin, который можно перевести как «Нейрогранулы» или «Нейрозерна». Проектом руководит проф. инженерного дела Университета Л. Герберта Баллу, проф. физики Arto Nurmikko (Laiwalla at al., 2019). Ключевые технологии проекта Neurograin включают междисциплинарные исследования в области проектирования схем, разработки встроенных систем, микротехнологии, технологии интеграции и упаковки, радиочастотной связи, нейронного декодирования и нейрохирургии. Сами по себе «нейрозерна» — это полностью беспроводные микромасштабные имплантаты, которые могут быть развернуты в единую систему для формирования крупномасштабной сети из несоединенных между собой, распределенных в заданном пространстве, двунаправленных узлов нейронных интерфейсов, способных к активной нейронной записи и электрической микростимуляции. Индивидуальный нейрозернистый микропроцессор имеет размер 100 микрон и объединяет микроэлектронные микросхемы, несущие в себе возможности для сбора радиочастотной энергии, нейронного зондирования, кортикальной микростимуляции и сложной сетевой двунаправленной беспроводной телеметрии, реализованной с использованием передовых технологий на базе дополнительных металл-оксидных полупроводников.
Устройства герметично закрыты для обеспечения долговременной надежности с использованием новых подходов к тонкослойной упаковке, что позволяет снизить накладные расходы на объем упаковки. Подача энергии и связь с сетью имплантатов управляются с помощью внешних носимых радиостанций по типу кожных пластырей, которые также способны обрабатывать данные в режиме реального времени для считывания нейронных данных и записи нейромодулирующей стимуляции. Задержка двусторонней связи в сети с тысячей каналов поддерживается в пределах физиологического разрешения (миллисекундная шкала).
Масштабируемость имплантируемых устройств нейроинтерфейса является критически узким местом в повышении производительности кортикальных интерфейсов «мозг — компьютер» (BCI) за счет ограничений к доступу к высокоплотным и многозональным кортикальным сигналам. Этого сложно достичь, но можно реализовать с помощью использования монолитных конструкций из 100–200 систем, часто с громоздкими дополнениями и упаковками, пространственно распределенными датчиками, недавно использованными группами, включая наличие лаборатории. F. Laiwalla, J. Lee, Ah-H. Lee et al. (2019) описали микромасштабный (500 мкм) программируемый нейронный стимулятор в контексте эпикортикальной беспроводной сетевой системы субмиллиметровых «нейрогранул» с беспроводным сбором энергии (около 1 ГГц) и двунаправленной телеметрией. Стимулирующие «нейрозерна» перед имплантацией для интеграции проходят постобработку поли (3,4-этилендиоксидиофен) полистиролсульфоната (PEDON: PSS); плоские электроды или интракортикальные проникающие микропровода, а также ансамбли микроустройств герметично инкапсулируются с использованием термокомпрессии жидкокристаллического полимера (LPC) для хронической имплантации. Управление радиочастотным питанием и телекоммуникациями осуществлялось с помощью переносного внешнего устройства Epidermal Skinpatch, чтобы обеспечить возможность для хронической имплантации. Авторы разработали технические характеристики нейрогранул и создали концепцию их применения у грызунов in vivo в лабораторных условиях, а также блок для обслуживания хронических функций имплантата в клинике.
Однако самое уникальное и самое нестандартное биотехнологическое решение проблемы интерфейса между мозгом человека и компьютером предложил один из самых публичных и неординарных людей Америки, да и, наверное, всего мира, миллиардер Илон Маск. Он хочет решить эту практически неразрешимую проблему современной неврологии и нейроинженерии путем создания уникального комплекса микроэлектродов и специализированного аппарата-робота для их внутримозговой имплантации. На собственные частные средства он собрал со всего мира команду высокопрофессиональных нейроученых (неврологов, биологов, математиков, физиков, биофизиков, нейрофизиологов и т.д.), которых обеспечил финансированием, дал им возможность привлечения и применения самых современных технологий и аппаратного инструментария и поставил перед ними задачу создания лучшего образца нейроинтерфейса в мире. Для этих целей им был создан стартап компания Neuralink. Есть мнение, что этот научный коллектив «обречен» на удачу и научный прорыв. Потому что именно Илон Маск сумел разработать, создать и запустить конвейер с самыми совершенными в мире электромобилями марки «Тесла», а также реализовал на практике космическую программу Национального космического агентства США по созданию космических кораблей многоразового использования, которую НАСА не могло реализовать несколько десятилетий после гибели их шаттла и его экипажа.
По словам Илона Маска, инвестировавшего не менее 100 млн долл. в проект нейроинтерфейса, стартапу Neuralink предстоит долгий путь, чтобы выпустить коммерческое устройство. На одном из русскоязычных сайтов (https://vc.ru/future/75737-sila-mysli-kak-rabotaet-neyrointerfeys-neuralink-ilona-maska-gde-primenim-i-chto-o-proekte-dumayut-eksperty) утверждается, что конечной целью стартапа компании Neuralink он видит «симбиоз искусственного интеллекта (ИИ) и человека». И. Маск считает, что это шанс спастись от угрозы порабощения человечества искусственным интеллектом!
17 июля 2019 г. предприниматель и изобретатель Илон Маск и руководители стартапа Neuralink впервые продемонстрировали проект своего нейроинтерфейса Link: он представляет собой «нити» -импланты для считывания информации из мозга и «швейного» робота-хирурга для их вживления. Проект основан на технологии гибких полимерных «нитей» с электродами, которые вживляются в кору головного мозга, считывают активность нейронов и стимулируют их. На каждой нити толщиной от 4 до 6 мкм (в десятки раз тоньше человеческого волоса) расположено по 32 электрода, всего система может включать до 3072 электродов на 96 нитях. Они имплантируются в различные участки мозга и на разную глубину, т.к. цели медицинских исследований и терапии фокусируются на разных частях мозга — центрах речи, зрения, слуха или движения. Основная цель Neuralink — создание безопасного нейроинтерфейса, способного улавливать мозговую активность и обрабатывать сигналы без риска отторжения имплантата организмом. В будущем компания планирует создать миниатюрный беспроводной имплантат, а его вживление, по словам представителей фирмы, будет не сложнее и не больнее Lasik — операции лазерной коррекции зрения. В 2020 г. Neuralink планировал получить одобрение от Министерства здравоохранения США и вместе с нейробиологами из Стэндфордского университета провести первые испытания на пациентах с полным параличом, однако из-за пандемии коронавируса окончательные исследования пока не завершены.
На чем пытаются осуществить научный прорыв в неврологии и нейроинженерии Илон Маск и его команда признанных экспертов в нейронауках? Они создали что-то принципиально новое и нестандартное? Нет и еще раз нет! Идеи компании Neuralink не «появились из ниоткуда» и опираются на множество исследований, посвященных гибким «нитям», но превосходят аналоги по безопасности и объему собираемых данных. Это новый биотехнологический уровень продолжения ранее существующих исследований Брауновского университета по проекту BrainGate. «Нити-электроды из полимера» и робот для их имплантации — это логичное завершение этого проекта. BrainGate использует массив микроэлектродных игл, в которых размещается до 128 электродов, и уступает Neuralink по объему извлекаемых из мозга данных. Более того, иглы жесткие, что ограничивает число доступных нейронов, мешает долгосрочной работе и небезопасно для человека, поскольку мозг движется внутри черепа. Тонкие полимерные «нити», по мнению исследователя из Neuralink Филиппа Сабеса, решают эти проблемы. «Нити» из-за их гибкости сложнее внедрить в кору головного мозга, чем иглы, поэтому Neuralink разработала специального робота, похожего на «смесь швейной машинки с микроскопом». Он способен вставлять по 6 «нитей» в минуту с помощью специальных тонких игл и полностью автоматизирован. Тем не менее нейрохирург сохраняет полный контроль над операцией и может регулировать процесс вручную. Робот размещает «нити» с электродами в непосредственной близости от нейронов, а система компьютерного зрения позволяет избежать проникновения иглы в кровеносные сосуды на поверхности мозга — это снижает вероятность воспалительной реакции организма на «внешние объекты». Чтобы установить имплантаты, хирургам приходится просверливать четыре 8-миллиметровых отверстия в черепе, но инженеры Neuralink считают, что в будущем для проникновения сквозь череп можно использовать лазер.
По мнению Илона Маска, одной из основных проблем взаимодействия человека с искусственным интеллектом (ИИ) является пропускная способность. Neuralink избавляет человека от «прослойки» между мыслью и компьютером, т.к. отдавать команды через нейроинтерфейс куда быстрее, чем голосом или ручным вводом. Но обилие информации и сложность ее считывания через нейроинтерфейсы — это проблема, которую Neuralink хочет решить с помощью специального чипа. Он в реальном времени принимает сигналы с «нитей», усиливает их, очищает от шумов и оцифровывает. У Neuralink есть 2 прототипа чипа с разными характеристиками по числу обрабатываемых каналов и мощности системы. Сейчас чип может передавать данные только через проводное соединение по USB-C, но цель компании — беспроводная система, которую назвали N1 Sensor. По задумке инженеров, N1 Sensor будет встраиваться в организм человека и передавать данные по беспроводной связи внешнему устройству с аккумулятором, расположенному за ухом. Датчиков будет 4: три в моторной области коры мозга, а последний — в соматосенсорной системе. Управлять N1 Sensor можно будет через iPhone. У чипа есть еще одно применение: его разработали так, чтобы не только обрабатывать данные, но и стимулировать клетки мозга. Прямая стимуляция мозга с помощью имплантированных электродов позволяет лечить расстройства двигательной системы и эпилепсию. Но большинство нейроинтерфейсов не адаптируются к потребностям и ощущениям пациента. Нейрохирурги и инженеры считают, что из-за этого недостатка стимуляция мозга не работает для лечения депрессии. Neuralink умеет анализировать данные с помощью машинного обучения и может адаптировать стимуляцию к потребностям пациента. В исследованиях компания Neuralink признает, что «пока не демонстрирует эти возможности».
Разработки компании Neuralink были оттестированы на грызунах и трех поросятах. В исследовательской работе Neuralink рассказывает о 19 операциях на крысах, в которых «нити» успешно разместили в 85,5% случаев, установив 1280 электродов (1020 работали одновременно). Крысы обходили прямоугольную пластиковую клетку, наполненную деревянной стружкой, и искали кусок пармезана. Провод, подключенный к порту USB-C, передавал мозговую активность крысы исследователям: потрескивание нейронов было слышно через динамик, а программа записывала и измеряла силу мозговых колебаний. Собираемых данных было в 10 раз больше того, что по силам самым мощным современным датчикам, пишет Bloomberg. 15 июля компания показала журналистам The New York Times подключенную к лабораторным крысам систему, которая считывала информацию с 1500 электродов. Это в 15 раз лучше, чем в других современных системах, и такого объема данных достаточно для научных исследований и медицинских применений, как пишет издание. В исследовании и официальной презентации приматы не упоминаются, но на секции вопросов и ответов И. Маск заявил, что обезьяна «смогла управлять компьютером с помощью своего мозга».
11 апреля 2021 г. в официальном ютьюб-аккаунте Neuralink появилось видео, на котором макака по имени Пейджер с помощью нейроинтерфейса управляет компьютером. Эксперимент на вид довольно прост. В качестве положительного подкрепления используется банановый смузи, подающийся по длинной трубочке. Если обезьяна наводит курсор на цветной квадрат, она получает порцию лакомства. Игра довольно простая: нужно попасть указателем в цель. Поначалу нейроинтерфейс калибруется: подопытное животное управляет курсором с помощью джойстика, а компьютер анализирует возникающую при этом электрическую активность мозга. Но затем происходит настоящая фантастика — джойстик физически отключается от компьютера. Обезьяна продолжает двигать им, однако на указатель этот сигнал уже не передается, управление им осуществляется интерфейсом «мозг — компьютер». Задание по-прежнему выполняется, поскольку нервные импульсы остаются теми же и Neuralink просто интерпретирует их в движение курсора на экране. Анализ этого материала представлен на сайте «Врачи РФ» (https://vrachirf.ru/concilium/87996.html?utm_source=vrch&utm_medium=dstr_35&utm_campaign=msg_10099).
При внимательном просмотре ролика можно заметить, что в некоторых случаях указатель попадает на квадрат даже раньше, чем рука макаки перемещает джойстик. Ну а пару раз система дает небольшой сбой и прицелиться получается не сразу.
Зрителям показали и вторую игру, которая еще интереснее. В ней джойстик совсем не используется: обезьяна должна управлять ракеткой в пинг-понге только мысленно. По словам диктора, это развлечение обезьяна Пейджер любит гораздо больше.
Как отмечает закадровый голос, имплантация нейроинтерфейса состоялась примерно за 6 недель до съемок. Пейджер получила сразу 2 модуля Neuralink, по одному на каждое полушарие. Причем единственное, что выдает недавнюю операцию, — не до конца отросшие волосы. Сами небольшие «таблетки» многообещающего устройства внедряются в череп заподлицо с внешней поверхностью кости. После заживления швов имплантация интерфейса «мозг — компьютер» внешне будет совсем незаметна. Имплантат Neuralink заряжается беспроводным путем и подключается к любому совместимому устройству по bluetooth. Набор данных, который он передает, можно увидеть в нескольких кадрах первого ролика или гораздо подробнее во втором. На нем спектрограмма считываемых нейроинтерфейсом сигналов синхронизирована с записью играющей в пинг-понг обезьяны. Это дополнительное видео компания разместила в своем блоге, подробно описывающем текущие достижения проекта. Впечатляющий ролик заканчивается активной агитацией стать частью команды Neuralink. По словам диктора, несмотря на все достижения стартап по-прежнему сталкивается со множеством трудностей, требующих при решении творческого подхода. И это неудивительно. В подобных исследованиях все далеко не всегда идет по плану, к тому же специфика разработок на стыке информатики и медицины требует множества согласований, разрешений и большой доли осторожности в своих действиях.
Когда начнутся испытания на человеке, сказать трудно. Маск, дополняя новость Neuralink, в своем твиттере пообещал, что использующие технологию парализованные пациенты смогут пользоваться смартфоном быстрее многих здоровых людей. И анонсировал возможность управления обездвиженными из-за нарушения нейронных связей конечностями с помощью Neuralink. Но в плане сроков он стал гораздо осторожнее и просто не называет конкретных цифр.
На деле стартапу никто не даст проводить операции на людях, пока Neuralink не пройдет серию испытаний, доказывающих безопасность процедуры. Остается ждать, когда научные работы за авторством команды Маска завершат все круги рецензирования. Только после этого можно надеяться на обещанный триумф технологий над хрупкостью человеческого тела (https://naked-science.ru/article/hi-tech/neuralink-pokazala-makaku-kotoraya-igraet-v-kompyuter-nye-igry-bukvalno-siloj-mysli). Также компания готова провести первые испытания на людях, но для этого нужно найти пациентов и убедить в безопасности Министерство здравоохранения США.
Специалисты компании Neuralink считают, что их нейроинтерфейс поможет в изучении и лечении неврологических болезней и нарушений работы мозга, восстановлении моторных функций, лечении слепоты, паралича, эпилепсии, депрессии, болезней Паркинсона и Альцгеймера. С помощью Neuralink парализованные люди смогут управлять телефонами и компьютерами силой мысли, например писать сообщения, просматривать сайты или «телепатически» общаться, как только «технология заработает в обоих направлениях».
После презентации исследователи и ученые разобрали поэлементно опубликованное Neuralink исследование и разделились во мнениях насчет работоспособности и безопасности проекта. Роботизированная платформа с интеграцией электродов и анализом активности с помощью специального программного обеспечения (ПО) — это прорывной анонс, но очень рано говорить о том, насколько быстро получится безопасно использовать Neuralink на людях, как пишет The Wall Street Journal. Потенциал повреждения тканей мозга может стать одной из ключевых проблем, с которой столкнется Neuralink при отправлении заявки на клинические испытания в Министерство здравоохранения США, как считает GeekWire. Например, исследование не получало рецензий; в нем нет информации о том, как долго «нити» могут находиться в мозге человека, нет ли воспалительной реакции на их внедрение и насколько длительна стабильная обработка сигналов нейронов. По мнению нейробиолога Лорена Франка из Калифорнийского университета, крайне важно получить эту информацию, прежде чем разрешать испытания на людях. С ним соглашается разработчик нейроинтерфейсов Тим Харрис — современные технологии, по его словам, не приблизились к полноценному протезированию нейроинтерфейсов. Также Bloomberg замечает, что даже если имплантаты функционируют должным образом, компании еще нужно показать, что она может делать с ними и с полученной информацией что-то полезное и безопасное. Например, предоставить методы лечения болезней с помощью Neuralink. Но компания Neuralink заявила, что сейчас изучает реакцию мозга на внедрение «нитей» и их отторжение, но пока «не готова обнародовать данные». Проф. Фрэнсис Крик из Института биологических исследований в Калифорнии отметил: гибкость «нитей» — это «существенный шаг вперед» для нейроинтерфейсов.
Но при этом компании Neuralink нужно доказать, что изоляция «нитей» продержится в мозговой среде достаточно долго, т.к. солевой раствор внутри мозга разрушает многие виды пластиков. Нейробиолог Эндрю Хайрс, разобравший исследование Neuralink в серии твитов, впечатлился проделанной работой и подчеркнул, что продукт компании «выходит за рамки современного уровня техники». Мы абсолютно согласны с этим утверждением, но, к сожалению, ультрапередовой уровень техники создания нейроинтерфейсов не решает проблему отсутствия нужной информационной теории устройства мозга, и поэтому вряд ли подобный интерфейс между мозгом и компьютером сможет обеспечить устойчивую информационную связь.
Варианты создания малоинвазивных нейроинтефейсов, основанных на принципах съема ЭЭГ, представлены на рис. 13.
Управляемые биоимпульсом человека протезы рук (рис. 15а) и ног (рис. 15d, e), а также управление роботизированным устройством для работы инвалида на компьютере (рис. 15b) уже стали шедеврами современной мировой биоинженерной мысли. Одними из наиболее совершенных протезов голени на сегодня считаются BiOM Ankle компании BionX (США), основанной проф. Массачусетского технологического института (MIT) Хью Хэрром (Hugh Herr). Миоэлектрические протезы BiOM Ankle оснащены микропроцессорами и сенсорами, благодаря которым становится возможной мгновенная автоматическая регулировка угла наклона стопы и уровня амортизации (рис. 16).
Верх совершенства и современных нейроинженерных достижений продемонстрировали «управляемые мыслью» протезы рук у пациентов с ампутированными конечностями, представленные специалистами Американского оборонного агенства перспективных технологий DARPA. Их достижения в 2017 г. признаны лучшими образцами нейроинтерфейса в создании биоуправляемых бионических протеозов (рис. 17).
Компания Touch Bionics (Великобритания), выпускающая миоэлектрические протезы кисти и пальцев под маркой i-limb, представила на мировом конгрессе Международного сообщества по протезированию и ортопедии ISPO-2015 (22–25 июня 2015) новую версию искусственной руки — i-limb quantum, основанную на технологии нейроинтерфейса (рис. 18). Функциональность i-limb реализуется с помощью программного обеспечения, описывающего набор стандартных движений и захватов и позволяющего регулировать силу сжатия. Новый проект i-limb quantum включает управление простыми жестами: чтобы выбрать нужный захват, носитель делает движение по одному из 4 направлений.
Таким образом, очевидно, что технологии нейроинтерфейса — самые продвинутые технологии в нейроинженерии, и они добились самых внушительных результатов. Однако большинство ученых и больших научных коллективов выдают желаемое за действительное, и мы слышим по радио и видим с экранов телевидения и в интернете, как самыми различными путями исследователи пытаются снять объективную информацию с головного мозга человека и передать ее в компьютер и обратно.
Обобщая все вышеизложенное, можно смело утверждать, что для целей создания разных типов нейроинтерфейсов разными научными коллективами используются различные электрические сигналы, получаемые аппаратными средствами от нервной ткани человека. В одних случаях источником взаимодействия от мозга служат данные электроэнцефалографии, электрический сигнал от внутримозговых микро- и наноэлектродов, имплантированных в кору головного мозга, а также используются распределенные электромагнитные сигналы от различных типов нанонапылений (нанопыль) на кору мозга или от имплантированных в кости черепа «биоболтов» или «биопортов», у которых есть расположенные над корой головного мозга электроды. В других случаях осуществляется отведение сигнала от нейростимулятора, имплантированного в проекции спинного мозга, или от электронейромиограммы периферических нервов, иннервирующих определенные группы поперечно-полосатых мышц. Но несмотря на столь разнообразные источники получения информационных сигналов от нервной ткани человека, пока даже близко нет реальных результатов фактического нейро-машинного взаимодействия между мозгом человека и компьютером. Технологически реализация феномена нейроинтерфейса пока не представляется реальной! Постоянные информационные «вбросы» о том, что где-то наконец-то осуществлена реальная установка интерфейса между мозгом обезьяны, находящейся в США, и компьютером, находящимся в Японии, на другом конце Земного шара, и при этом биопотенциалы мозга американской обезьяны управляются биопотенциалами головного мозга японской обезьяны через осуществленный компьютерный нейроинтерфейс, — на самом деле являются очередными рекламными, фейковыми новостями. Это связано с большими надеждами человечества на потенциальную возможность передачи мыслей на расстоянии. Именно поэтому это самые высокофинансируемые и самые многообещающие исследования в области нейроинженерии и считается, что именно они обеспечат тот научный прорыв, на который рассчитывает вся мировая научная общественность.
Нейротехнологии функционального объединения живых и неживых элементов нервной ткани. Эти технологии условно занимают второе место среди ведущих нейроинженерных технологий в мире. Исследователи из Института биохимии Макса Планка (Германия) соединили ряд живых нервных клеток с элементами кремниевого чипа. Так была образована схема «кремний — нейрон — нейрон — кремний». Входной электрический импульс приводил в возбужденное состояние первый нейрон, тот посылал сигнал второму, второй подхватывал сигнал и «передавал» его на транзистор. В эксперименте использовались нейроны улитки Lymnaea stagnalis из-за больших размеров ее нервных клеток, доступных для манипуляций обычными инструментами.
Нейроинженерия давно пыталась достичь подобного результата: гибридные схемы из живых и неживых элементов в будущем позволят заменять поврежденные биомеханизмы на искусственные имплантаты, управляемые нервной системой. Нейрофизиологи из Технологического института Джорджии (США) совместно с искусствоведами из Университета Западной Австралии научили крысиные нейроны «рисовать». Для исполнения эксперимента американцы взяли кусок мозга грызуна и подсоединили его нейроны к 60 электродам, а те подключили к компьютеру. ПК читает нейронные сигналы в Америке. Переданные по электронной почте потоки сознания крысиных нейронов изливаются на бумагу при помощи 3 цветных фломастеров уже на Австралийском континенте (Петренко, Светлова, 2014). Можно ли это явление назвать нейроинтерфейсом? Наверное, нет. Хотя сам принцип соединения живой нервной ткани и неживой материи соответствует духу фундаментальных нейроинженерных исследований.
Европейские ученые разрабатывают инвалидное кресло, управляемое импульсами мозга. Пользователи таких кресел будут надевать на голову «шапку» — специальное устройство, снабженное электродами, улавливающими малейшие электрические колебания на поверхности головы. Современные технологии позволяют преобразовать эти импульсы в команды, управляющие движением кресла. Разработка такого инвалидного кресла началась недавно, но опыты ученых уже дают положительные результаты. Пока вся система построена на основе простейшего робота на колесах, подобного радиоуправляемым игрушкам. При помощи специальной электронной «шапки» ученым удалось заставить его двигаться в 3 направлениях — налево, направо и вперед, как сообщает BBC.
Когда человек хочет двигаться в каком-то направлении, его мозг порождает определенные импульсы. Эти импульсы всегда одинаковы для одного и того же направления движения. Электронная «шапка» улавливает эти импульсы при помощи электроэнцефалографии (ЭЭГ) и передает полученные данные в компьютер. Специальная программа, разработанная учеными, анализирует полученные данные и преобразовывает их в команды, которые затем передаются роботу (http://news.proext.com/tech/11999.html). Сам робот запрограммирован так, что он начинает движение или поворачивает куда бы то ни было не сразу, а только когда есть такая возможность. Таким образом, он никуда не врезается. Кроме того, в робота встроены инфракрасные датчики, которые распознают различные объекты и помогают роботу избежать столкновения с ними.
Британский проф. Кевин Уорвик (K. Warwick) сообщил фонду «Наука за продление жизни», что на факультете кибернетики Университета Рединга (Великобритания) появилось необычное существо по имени Гордон, который в буквальном смысле является крысороботом. Внутри искусственной конструкции содержится питательная среда с десятками тысяч нейронов, выделенных из мозга живой крысы. Гордон — очередной продукт знаменитого редингского проф. Кевина Уорвика, который в этом эксперименте объединился с биологом, проф. Школы фармацевтики того же университета Беном Уорлли (B. Worlly). Потенциальные возможности «квазимозга» Гордона соответствуют лишь уровню продвинутых насекомых (скажем, пчел или ос). Однако даже такая, сильно облегченная версия крысиного мозга, представленная британскими учеными, не может не будоражить воображение всех ценителей жанра science fiction, хотя это уже не первая попытка создания подобных гибридов. Американец Стив Поттер из лаборатории нейроинженерии Технологического института штата Джорджия (Атланта) еще в 2003 г. сконструировал гибридное устройство (hybrot), содержащее несколько тысяч крысиных нейронов, а годом позже Томас Де Марс из Университета Флориды создал «мозг в чашке», состоявший уже из 25 тыс. крысиных нейронов.
Крысоробот Гордон из Рединга по количеству нейронов в мозге значительно умнее своих собратьев, но главная новизна эксперимента Уорвика — Уолли в том, что им впервые удалось установить непосредственный контакт с живым мозгом, находящимся в искусственной оболочке. Непосредственным показателем биоэлектрической активности нервных клеток при передаче нейронных импульсов выступают спонтанные перепады напряжения (т.н. биоэлектрический потенциал), определяемые разностью электрических потенциалов между 2 точками живой ткани. И именно такие электрические сигналы четко фиксировались на компьютерных экранах наблюдателей. Ключевой аспект исследований, по мнению авторов, заключался в понимании того, что же такое память. На данной модели исследователи по-разному экспериментируют с «маленьким живым мозгом», находящимся внутри робота. Они помещают робота в различные положения, заставляют его познавать окружающую среду и выясняют, насколько хорошо сохраняются эти воспоминания в мозге. Следующий шаг должен усилить эти воспоминания — в перспективе это может помочь в лечении болезни Альцгеймера, а также людям, пораженным инсультом. Мозг имеет приблизительно 100 тыс. нейронов, которые растут на множестве электродов. Коммуникация происходит как через эти электроды, которые фиксируют сенсорную информацию от тела робота, так и через «двигательные» команды, исходящие от мозга и поступающие на его колеса. Авторы эксперимента действительно находятся в контакте, потому что мозг удается стимулировать и он отвечает на их стимулы. Постепенно, по мере того как мозг учится управлять «телом» — роботом, у него возникает привычка к этой деятельности, и эта привычка усиливает образование связей между нейронами.
Нейротехнологии искусственного протезирования участков головного и спинного мозга. Обсуждая эти нейротехнологии, обратим внимание на нейроинженерные работы проф. Теодора Бергера (Theodore W. Berger) (рис. 19), который считается основоположником искусственного нейропротезирования в современной нейроинженерии.
Он проводит эксперименты по клеточным (молекулярным) механизмам пластичности синаптических связей и влиянию этой пластичности на функциональную динамику гиппокампа на сетевом и системном уровнях; является руководителем группы разработчиков технологии протезирования мозга в Центре нейроинженерии Университета Южной Калифорнии. Считается, что он якобы первым заменил гиппокамп крысы чипом в 2009 г. (рис. 20). Другими словами, считается, что именно он и его группа создали «искусственный гиппокамп». Эта технология где-то граничит с технологиями нейроинтерфейса. В настоящее время его группа разрабатывает технологию «нейронно-кремниевого интерфейса», используя многоабонентскую электродную матрицу на основе кремниевых соединений и методы выращивания тканевой культуры для последующей имплантации аппаратных моделей в мозг и замены поврежденной или дисфункциональной нервной ткани.
Чтобы понять масштаб проекта, на который нацелились Томас Бергер и его команда, нужно сделать определенное отступление и дать небольшие пояснения. Работа Т. Бергера направлена на протезирование функции памяти и на искусственное восстановление утерянной памяти. И хотя считается, что он «создал и имплантировал первый в мире искусственный гиппокамп», полученный им и его командой, результат лишь условно можно считать реальным восстановлением утраченной памяти.
При этом надо понять, что в современных науках о мозге не существует четкого понимания и строго научного объяснения феномена, которое мы называем памятью, и нет точного научного описания того, где она локализуется. Современные нейрофизиологические представления о памяти очень нечеткие, и большинство нейроспециалистов считают, что память равномерно распределена по коре головного мозга и локализована про всему мозгу и в гиппокампе. Человеческая память бывает двух видов — кратковременная и долговременная.
Кратковременная память характеризуется малым объемом и небольшим (порядка 30 с) временем хранения, причем главную роль в образовании кратковременной памяти играют лобные доли головного мозга. У долговременной памяти и объем, и время хранения информации практически не ограничены. В качестве кладовых этого вида памяти выступают уже височные отделы коры. Впрочем, выделить участки коры, где хранится память о тех или иных специфических событиях, никому пока так и не удалось. В качестве возможного объяснения этих безуспешных попыток учеными было сделано предположение, что записи о том или ином конкретном событии дублируются в разных участках коры головного мозга. Косвенно это подтверждают эксперименты американца Карла Лешли (Karl Lashley), проведенные в конце 1950-х гг.: сначала он обучал крыс проходить через лабиринт, а затем поочередно удалял различные части их мозга. Как оказалось, вне зависимости от того, какая часть головного мозга удалялась, крысы всегда сохраняли способность ориентироваться в лабиринте (проверять их реакцию на полное удаление мозга дотошный исследователь не стал). Удивительно, но именно эти научные представления являются доминирующими в нейрофизиологии, нейропсихологии и клинической медицине последние 60–70 лет. Тогда с Карлом Лешли работал Карл Прибрам (Karl Pribram), известный американский нейрофизиолог и экспериментатор. Они вместе изучали поведение экспериментальных крыс, обученных правильной навигации в лабиринте, он тоже хирургическим путем удалял постепенно разные части головного мозга этих животных, и, к его удивлению, память животных на выполнение программы прохождения лабиринта практически не страдала от объема удаленного мозга. И только тогда, когда он пересекал гиппокамп, животные теряли ориентацию и не могли выполнить заученную программу прохода по лабиринту. Он пришел к заключению, что количество удаленного головного мозга у животных не влияет на объем памяти и что память равномерно распределена по всему мозгу и локализована преимущественно в гиппокампе, т.к. при его повреждении (удалении) полностью теряется способность что-либо запоминать.
Данный фундаментальный вывод К. Прибрама стал краеугольной догмой в нейронауках последние 7 десятилетий. Якобы он был подтвержден К. Прибрамом с помощью клинического факта глобарного выпадения памяти у одного больного с ишемическим повреждением, локализованным в гиппокампе. Обнаруженный К. Прибрамом у одного из пациентов в неврологической клинике феномен нарушения памяти при ишемии гиппокампа определил на последующие годы научное представление о том, что память локализуется именно в гиппокампе, и стал неопровержимым клиническим подтверждением его экспериментальных данных. При этом уже был неважен тот факт, что у целого ряда других больных с ишемией в проекции гиппокампа нарушений памяти не было выявлено. Догма была принята научной общественностью и в последующем якобы постоянно получала экспериментальные подтверждения.
Еще один постулат о том, что высшие мыслительные функции человека (включая память) осуществляются в коре головного мозга — сравнительно небольшом образовании толщиной около 1/3 см, и сегодня считается более чем очевидным. Пожалуй, самое убедительное свидетельство его справедливости — опыты канадского нейрофизиолога и нейрохирурга Уайлдера Пенфилда, проведенные в 1950-х гг. в Монреале. В ходе исследований по выявлению очага эпилепсии он обнажал поверхность мозга больных (иначе говоря, трепанировал их черепа) и раздражал определенные участки коры полушария мозга пациента с помощью электродов. Больные при этом находились в сознании, под местным наркозом и могли описывать свои ощущения. Как оказалось, при раздражении тех или иных участков коры пациенты переживали яркие воспоминания различных моментов своего прошлого. К. Прибрам в дальнейшем тоже участвовал в изучении памяти у больных с эпилепсией и подтвердил свои данные прямой электростимуляцией различных отделов коры мозга у больных во время операций на открытом мозге; он показал, что способен вызывать одинаковые воспоминания при стимуляции определенных зон в коре мозга. Несмотря на это, он остался на позициях равномерного распределения памяти по всему головному мозгу человека и локализовал память в коре мозга. В дальнейшем у многих больных с повреждением гиппокампа не было выявлено подобных нарушений памяти, но на самом деле это уже было неважным и никого не интересовало. Истина была установлена, и дилемма решена на долгие времена! Была сформулирована научная гипотеза, что краткосрочная память расположена во всей коре головного мозга и голографически распределена по всему объему мозга, а долговременная память сосредоточена именно в гиппокампе (Прибрам, 1968). Но каким образом конкретно голографическая память распределена по мозгу, Карл Прибрам так и не смог объяснить.
Современные исследования с использованием МРТ показали, что гиппокамп играет важную роль в процессе запоминания, и имеются доказательства, что именно гиппокамп имеет определяющую роль в поиске кратчайших путей и прокладке маршрутов между уже хорошо известными местами. К примеру, таксистам из Лондона необходимо знать большое количество мест и наиболее коротких путей между ними. Исследование одного из университетов Лондона в 2003 г. показало, что гиппокамп у таксистов больше, чем у большинства людей, и что наиболее опытные таксисты имеют больший гиппокамп, чем таксисты, не имеющие большого опыта. Томография мозга показывает, что гиппокамп наиболее активен у людей во время успешного перемещения в пространстве, и те же пространственные клетки у человека задействованы в поиске пути во время навигации по виртуальным городам. Поэтому попытка создания искусственного гиппокампа и его имплантация — это больше претензия на прорыв в наших научных представлениях и в доказательстве локализации памяти в данном анатомическом образовании. Это важно еще и потому, что установлено, что память бывает двух типов: кратковременная — сохраняющаяся лишь до тех пор, пока мы удерживаем внимание на объекте, и локализующаяся в префронтальной коре — долговременная. Последняя, в свою очередь, делится на сознательную, или декларативную, память о событиях, фактах, ощущениях и бессознательную, имплицитную, или процедурную, память (например, о двигательных навыках). Установлено, что во сне происходит закрепление обоих типов долговременной памяти, причем декларативная память закрепляется в фазе медленного сна, а процедурная — в фазе быстрого сна. Запоминание во время медленного сна — процесс активный, требующий работы гиппокампа. Гиппокамп получает также входы от зрительной, обонятельной и слуховой систем. Грубо говоря, на него можно смотреть как на черный ящик со множеством входов и выходов. Разные входные комбинации сигналов приводят к тем или иным выходным комбинациям.
Теодор Бергер, директор и руководитель проекта Центра нейроинженерии Университета Южной Калифорнии, пришел к парадоксальному выводу, что работу гиппокампа можно воспроизвести в микросхеме. Нейроны, идущие на вход гиппокампа, ученые стимулировали беспорядочными сигналами, выдаваемыми компьютером, имитируя разнообразие информации, приходящей извне. Исследователи фиксировали ответные сигналы. Эта работа шла далеко не один год. Наконец компьютер смог вычислить все математические функции, которые гиппокамп крысы осуществлял с нейросигналами. Они создали микросхему, которая воспроизводила работу гиппокампа крысы с точностью 95%. Какое эта схема проф. Т. Бергера имеет отношение к памяти, не очень понятно, но то, что эта схема позволяет моделировать функции маршрутизатора и коммутатора, несомненно.
Далее T. Berger участвовал в разработке аналога сверхбольшой интегральной микросхемы — СБИМС (VLSI) экспериментальных моделей нейронов гиппокампа и нейронных сетей как для фундаментальных исследований, так и для прикладных программ. Он исследовал применение математических методов на биологической основе функциональных свойств гиппокампа, суммируя экспериментальные исследования фундаментальных электрофизиологических свойств нейронов гиппокампа. Насколько важны и актуальны эти исследования, судить трудно. Наверное, очень важны; если считать, что память человека как основная функция мозга действительно расположена в гиппокампе, тогда актуальность этих исследований огромна. Однако роль гиппокампа в процессах памяти еще точно не установлена. Реальных доказательств роли гиппокампа как вместилища долговременной памяти не существует. Все данные о том, что память сосредоточена в структурах гиппокампа, основаны все-таки на устаревших экспериментальных исследованиях прошлого века, проводимых Карлом Прибрамом, но они не имеют современного научного подтверждения. До настоящего времени, спустя 10 лет после этих разработок, так и не появилось реальных доказательств того, что ученые действительно смогли спротезировать память у крыс и человека. Поэтому сложно понять, что именно протезировал T. Berger; остается достаточно неясным и почему спустя 10 лет после этих выдающихся работ мы ничего не знаем об этих высокотехнологичных достижениях и они так и не внедрены в практику неврологической клиники до настоящего времени. А ведь больных с нарушениями памяти в любой неврологической клинике более двух третей.
Другое исследование израильских ученых поставило целью создание нейротехнологии, протезирующей функцию мозжечка человека. Мозжечок считается одной из наиболее изученных частей головного мозга. Изученной настолько хорошо, что недавно был даже создан и продемонстрирован в действии первый простейший чип — компьютерный аналог естественного мозжечка. Эксперимент был поставлен командой израильских ученых под руководством проф. М. Минца из Университета Тель-Авива. Полностью парализованную белую крысу заново научили моргать с помощью электродов, вживленных на место разрушенного мозжечка. Импульсы от неповрежденных отделов мозга грызуна поступали в ходе опыта на микроскопический компьютерный чип. Тот, в свою очередь, расшифровывал их и передавал дальше — центральной нервной системе животного. Устройство, продемонстрированное в Израиле, представляет собой пока что самую примитивную из возможных конструкцию такого рода. Однако впоследствии проф. М. Минц предполагает «обучить» микрочип распознаванию и других сигналов мозга, чтобы расширить его функциональность.
Группа исследователей под руководством Питера Фромхерца из Отделения мембран и нейрофизики (Department of Membrane and Neurophysics) Института биохимии Макса Планка тоже впервые соединила фрагмент живой ткани мозга с микрочипом. Биологи пересадили тончайший срез гиппокампа крысы на поверхность специального чипа. Известно, что в процессе запоминания и хранения информации у млекопитающих принимает участие несколько отделов головного мозга. При этом считается, что перед тем как информация попадает на долговременное хранение, она предварительно «записывается» в гиппокампе. Однако этот, как и другие традиционные методы имеют много недостатков — они требуют вмешательства (зачастую достаточно грубого, нарушающего нормальную работу мозга), ограничены небольшим количеством клеток и страдают малым разрешением. Регистрация активности большого числа клеток мозга млекопитающих стала возможной при применении чипов высокой плотности, разработанных в компании Infineon Technologies. Ученым из Мартинсрида удалось разработать «революционный подход к изучению мозга», позволяющий регистрировать активность и взаимодействие тысяч нервных клеток в срезе тканей мозга. Работа считается реальным научным прорывом в области создания связей нервной системы с микрочипами. Ранее доступные нейрофизиологам методы ограничивались небольшим количеством нейронов. Регистрирующие же активность нервных клеток чипы, разработанные в сотрудничестве с компанией Infineon Technologies AG, отличаются, в свою очередь, очень высокой плотностью, эквивалентной 16 384 транзисторам на площади в 1 мм2. Возможность осуществлять запись интегрированной активности целостного интактного фрагмента мозга млекопитающих представляет собой действительно значительный технологический прорыв. Используя новый метод, группа Питера Фромхерца смогла визуализировать влияние фармацевтических препаратов на нейронную сеть. Это говорит о возможности использования данного метода в качестве новой тест-системы для исследований мозга и в фармакологии. Последним результатам работы группы ученых из Германии предшествовали эксперименты с использованием «самодельных» чипов относительно малой плотности. С их помощью сначала регистрировались сигналы отдельных нервных клеток пиявок, а затем небольших групп нейронов моллюсков. Разработка гибридной системы, интегрирующей нервную ткань и полупроводниковое устройство, может означать огромный скачок в работах по протезированию поврежденного мозга и созданию нейрокомпьютеров.
А. В. Русанов, Ю. С. Балашов, В. А. Скляр (2012) в обзорной статье представили различные разработки интегрированных устройств на основе микроэлектродов и средств микроэлектроники в масштабах микросхем для использования в нейроинженерии и создании имплантов мозга на основе КМОП — набора полупроводниковых технологий построения интегральных микросхем (англ. CMOS — Complementary symmetry/metal-oxid semiconductor — комплементарная логика на трансзисторах метал-оксид полупроводниках, КМОП). Ими описана методика разработки аналоговых КМОП-схем со сверхнизким потреблением энергии, основанная на использовании массивов микроэлектродов, при создании имплантов мозга. Разработанная КМОП-схема включает подсхемы усиления и мультиплексирования. Приведены результаты экспериментальных исследований эффективности предложенного устройства в обнаружении псевдоспайков и измерении локальных усилений. Показана его эффективность с точки зрения потребления энергии и обеспечиваемого качества измерения входных сигналов. Описаны варианты использования нового устройства в нейроинженерии для построения интерфейсов мозга с компьютером.
Нейротехнологии для нейробиологии, анализа и моделирования мозговых цепей и понимания работы нейронной сети мозга. Очень известный нейроученый в области нейроинженерии Эд Бойден (Ed Boyden) (рис. 21) является нейробиологом-оптогенетиком, адъюнкт-профессором Института исследований мозга Патрика МакГоверна при MIT и пионером еще одного из инновационных нейроинженерных направлений. Ed Boyden разрабатывает оптогенетические инструменты для активации и отключения элементов нейронных цепей с помощью света, трехмерные изготовленные микротехнологическими методами нейронные интерфейсы для контроля и считывания информации о нейронной активности, а также робототехнические методы автоматической записи внутриклеточной нейронной активности и анализа одиночных клеток в живом мозге.
Он применяет нейротехнологии для анализа и моделирования мозговых цепей и понимания работы нейронной сети мозга, а также делает возможным системное восстановление клеток мозга, поврежденного в результате таких заболеваний, как эпилепсия, болезнь Паркинсона, посттравматическое стрессовое расстройство и хронические боли.
Ed Boyden положил начало отмеченному рядом наград учебному курсу Массачусетского технологического института о принципах нейроинженерии, во время которого слушатели проходили путь от основных принципов контроля и наблюдения за нейронными функциями до стратегий запуска нанотехнологий. Ed Boyden — один из самых центровых специалистов в области современной нейроинженерии и имеет столько должностей и регалий, что обсуждение его подхода в нейроинженерии любым нейроспециалистом будет не очень корректным. Он имеет докторскую степень по нейробиологии Стэндфордского университета за открытие того, как механизмы, используемые для хранения памяти, определяют содержание нового знания. Он имеет более 250 рецензированных работ, действующих или находящихся в процессе рассмотрения патентов, статей. Ed Boyden — доцент биоинженерии и наук о мозге и когнитивных наук, руководитель группы синтетической нейробиологии в MediaLab Массачусетского технологического института. Входил в топ-35 ведущих инноваторов младше 35 лет по версии Technology Review и в топ-20 лучших умов младше 40 лет по версии Discover Magazine, обладатель награды NIH Director’s New Innovator Award, исследовательской премии «За инновации в нейробиологии» Общества нейробиологии США, премии NSF CAREER Award Национального научного фонда США, премии Пола Аллена (Paul Allen Distinguished Investigator Award), Робертсоновской премии для исследователей от Нью-Йоркского фонда стволовых клеток (New York Stem Cell Foundation — Robertson Investigator Award), премии по нейробиологии Университета Северной Каролины (Perl/UNC prize), премии Института инженерии и технологии (IET Harvey Prize). Читал лекции по оптогенетике в Фонде TED («Технология, развлечения, дизайн») и на Всемирном экономическом форуме в Давосе.
Но оптогенетические исследования — не единственное достоинство данного направления нейротехнологий. Некоторыми английскими и российскими учеными в совместном проекте предложена гипотеза о том, что временная корреляция лежит в основе увязки различных визуальных признаков, распознаваемых в разных областях головного мозга (Чик и др., 2008). Описаны методика и содержание теоретических и математических исследований синхронизма осцилляторов на нейронах с интегрирующим возбуждением. Ими рассмотрена математическая модель системы таких осцилляторов и изучено поведение вариантов такой системы. Установлено, что 2 локально связанных осциллятора указанного типа быстро втягиваются в синхронизм за время, пропорциональное логарифму их размеров. Определены параметры, позволяющие управлять скоростью синхронизации. Использованы данные о динамике релаксационных осцилляторов на нейронных сетях с локальным возбуждением и глобальным торможением. На основе этих данных установлено, что глобальное торможение может вызывать десинхронизацию в нейронной сети с осцилляторами на нейронах с интегрирующим возбуждением. Авторами описаны примеры использования синхронных осцилляторов для сегментации изображений (Там же).
Нейротехнологии ускоренного обучения. Одним из научных направлений современной нейроинженерии являются работы по созданию нейротехнологий быстрого (мгновенного) обучения (tainy.net›34225-mgnovennoe-obuchenie-realnost-ili…). Эта нейротехнология пришла в научную нейроинженерию из известного фантастического кинофильма «Матрица». «Я знаю кунг-фу» — эту фразу можно назвать одной из самых запоминающихся в фильме «Матрица» (1999). Нео, персонаж Киану Ривза, произнес ее после того, как знания о боевом искусстве за считаные мгновения загрузились в его мозг посредством футуристического компьютерного разъема в черепе. Сейчас на то, чтобы стать мастером кунг-фу, уйдут тысячи часов практики. Однако существует несколько хитростей, используя которые можно усилить обучающий процесс при помощи технологий. Возможно, в будущем будет совершен серьезный прорыв в нескольких важнейших областях и усвоение навыков и знаний будет происходить с огромной скоростью при помощи внешнего, а также хирургически имплантированного оборудования. По словам Брюса МакНотона (Bruce McNaughton), нейробиолога из канадского Университета в Летбридже, данная концепция не такая фантастическая, какой кажется на первый взгляд. Более того, он считает, что ее реализуют уже в ближайшие несколько столетий через систему замаскированной мозговой тренировки. Обучение — это довольно утомительный процесс. Постоянное повторение упражнений, неважно, математическая это задача или прыжки с шестом, постепенно закрепляется в долгосрочной ментальной и мышечной памяти. Недавно было опубликовано исследование, в котором предполагается, что процесс обучения можно ускорить таким образом, что обучающийся даже не заметит этого. У этой техники есть даже звучное научно-фантастическое название — «декодированная обратная нейрологическая связь». Используя сканер мозга, ученые вели наблюдение за паттернами активности в визуальном кортексе участвующих в эксперименте во время того, как те рассматривали различные ориентации какого-нибудь объекта. Во время многочасовых сессий в течение нескольких дней у участников было лишь одно конкретное ментальное задание — концентрироваться на зеленом диске таким образом, чтобы он начал вырастать в размере; это было назначено паттерном одной из ориентаций. С течением времени у участников стал лучше выходить процесс идентификации этой конкретной ориентации объекта, причем они даже не заметили, что их тренировали этому процессу. Другими словами, они обучились.
Этот принцип непрямого сублиминального обучения однажды может помочь обучить кого-нибудь, к примеру, выполнению броска дзюдо или игре на фортепиано. Как отмечает проф. нейромедицины из университета Бостона, ведущий автор исследования декодированных обратных нейросвязей Такео Ватанабе (Takeo Watanabe), естественно, что это еще не «Матрица», но со временем способ может перерасти в мощнейший инструмент, который будет во многом похож на происходящее в фильме. На текущий момент эту технику использовали лишь в перцептивном обучении, конкретно в визуальном обучении. А применение ее для моторного обучения — скоординированного движения членов тела, дыхания и баланса, которые являются важнейшей частью, к примеру, того же кунг-фу — станет серьезным вызовом для ученых. По мнению Т. Ватанабе, моторное обучение очень похоже на перцептивное, поэтому можно с высокой долей уверенности сказать, что эту технику можно применить и к нему. Однако моторному обучению требуются улучшения в последовательности движений, поэтому на это может уйти намного больше времени.
В настоящий момент на улучшение выполнения одного движения может уйти год или около этого, если применить эту методику. Если сравнить это со скоростью обучения из «Матрицы», то это практически вечность. Но у техники T. Ватанабе есть одно ключевое преимущество. В «Матрице» информацию и навыки транслировали в мозг напрямую, а в методике Ватанабе внедряться в человеческий мозг не нужно. У Нео и его друзей было множество различных портов по всему телу, куда подсоединялись питающие трубки и другие сенсорные кабели. Но самый важный разъем находился у основания черепа. Именно он позволял подключаться к обучающей программе.
На сегодняшний день в медицинской науке есть сходные, но пока не настолько продвинутые устройства. Это экспериментальные устройства, позволяющие парализованным людям контролировать механическую руку-манипулятор при помощи мыслительных команд. В мозг человека встраивается имплантат, который регистрирует электрическую активность нейронов, транслируя ее к механической руке. Дальнейшее развитие этих систем сможет существенно ускорить реабилитацию людей. По словам Брюса МакНотона, поверхностному манипулированию мозгом научатся уже в ближайшие десятилетия. Более того, станут реальными, к примеру, восстановление грубого визуального восприятия для слепых или считывание грубых управляющих сигналов для роботизированных протезов. Подобные вещи начали делать уже сейчас. Но для того чтобы развивать это направление, ученым понадобится более глубокое понимание физических основ человеческого мышления и памяти.
В мозге человека в среднем около 100 млрд нейронов, соединенных между собой триллионами нейронных связей, получивших название синапсов. Несомненно, что кратковременная память, во всяком случае частично, физически записывается в постоянно меняющихся нейронных соединениях, а также в самой нейронной архитектуре. Перепрограммирование клеток мозга таким образом, чтобы они формировали новые воспоминания, потребует прецизионной точности при очень малых масштабах оперирования.
По мнению Брюса МакНотона, теоретически возможность осуществить запись с нескольких нейронов достаточно реально, чтобы в дальнейшем стимулировать их. В некотором смысле это сможет возбудить всю систему. Но текущий уровень технологий не позволяет осуществить подобное без массивного вмешательства в мозг, что неминуемо приведет к серьезным повреждениям, да и сам имплантат в любом случае отторгнется иммунной системой. Но если предположить, что особые биосовместимые покрытия или лекарства помогут избежать атак со стороны иммунной системы, а также то, что имплантаты научатся взаимодействовать с внешними приборами для выборочного воздействия на нейроны на молекулярном уровне, все равно остается еще один фундаментальный вопрос: один ли язык или нейронный код использует мозг каждого человека или он у разных людей различен?
Ученые десятилетиями пытаются расшифровать мозговой нейронный код. Записываются паттерны мозговой активности во время обучения, рассуждения и запоминания у разных людей. И часто в процессе их изучения выясняется, что они могут существенно меняться от человека к человеку. В разных случаях мозг разных людей не действует по определенному стандарту, в отличие от компьютеров, которые с легкостью воспринимают общую программу обучения. Однако T. Ватанабе настроен довольно оптимистично и убежден в том, что применив техники декодированных обратных нейрологических связей, ученые уже в ближайшем будущем научатся удалять нежелательные и травмирующие воспоминания для усиления обучения.
На сайте www.bbc.co.uk мы нашли информацию о том, что еще в 2012 г. американские эксперты разработали то, что, по их словам, является наиболее реалистичным и точным с биологической точки зрения роботизированным протезом ног на основе работы нейросетей мозга человека. Инженеры уверены, что разработка может способствовать пониманию того, как дети учатся ходить и как следует лечить спинномозговые травмы. Специалистами была создана специальная система сообщений, которая генерирует ритмические сигналы мышц, контролирующих ходьбу. Британские эксперты считают, что интерес работы состоит еще и в том, что робот имитирует процесс ходьбы, а не просто движется.
Команда инженеров из Университета Аризоны (США) смогла сделать машинную копию сети нервных клеток в поясничном отделе спинного мозга, который генерирует ритмические сигналы мышц. Нейронные сети производят, а затем контролируют эти сигналы, собирая информацию из различных частей тела, участвующих в ходьбе. Это позволяет людям ходить, не думая об этом. В статье в журнале о нейроинженерии Journal of Neural Engineering говорится: «Этот робот представляет собой физическую или нейроботизированую модель системы, что свидетельствует о полезности такого рода исследований робототехники для изучения нейропсихологических процессов ходьбы человека и животных».
Мэтт Торнтон из Национальной ортопедической больницы Великобритании (UK’s Royal National Orthopaedic Hospital) отметил, что предыдущие роботы лишь имитировали движения человека, а этот в отличие от них копирует основные механизмы, контролирующие процесс движения человека. Авторы исследования убеждены, что это может создать новый подход к исследованию и пониманию связи между проблемами нервной системы и патологиями ходьбы.
Нейротехнологии для биоуправления техникой с использованием живых нейронных сетей. Несомненно, что это направление нейротехнологий также является вариацией и неотъемлемой частью технологий нейромашинного интерфейса. Однако здесь мы хотим поговорить об особом направлении этих современных нейротехнологий, когда устанавливается информационное взаимодействие между живыми нейросетями и компьютером, управляющим техническим устройством. Одним из очень перспективных направлений современной нейроинженерии являются работы Томаса ДеМарса (Thomas DeMarse), проф. биомедицинской инженерии Флоридского университета (США), который стал автором сенсационного проекта. Из клеток крысиного мозга он вырастил отдельный живой «мозг» и, подсоединив к компьютеру, обучил его управлять симулятором военного самолета.
Как считает Томас ДеМарс, эти достижения — только начало. Открытие позволит ученым сделать то, о чем они раньше могли только мечтать: увидеть, как взаимодействуют клетки мозга при выполнении определенной функции. «Мозг» Томаса ДеМарса — это 25 тыс. живых нервных клеток мозга крысы, помещенных в чашку Петри и подсоединенных через электроды к компьютеру. Это уникальное «окно», сквозь которое ученые могут наблюдать за работой мозга на клеточном уровне. Видя, как взаимодействуют клетки мозга, ученые смогут понять, что вызывает нервные расстройства, такие, например, как эпилепсия, и найти безоперационные методы их лечения.
Будучи «живым компьютером», созданная ДеМарсом модель может быть использована очень широко — например, для беспилотного управления самолетом или для выполнения заданий, опасных для жизни человека, вплоть до розыскных и спасательных операций. «Наш мозг обладает фантастической вместительностью! — говорит Томас ДеМарс. Вы легко можете вспомнить, что вы делали, когда вам было пять лет. Для человека это в порядке вещей, но компьютер пока на такое неспособен. Если мы вычислим, как работают нейронные сети мозга, то есть как нейроны складываются во время работы в своеобразные мозаики, мы сможем применить их для создания новых компьютерных сетей».
Экспериментальный «мозг» Т. ДеМарса взаимодействует с симулятором военного самолета F-22 через специально созданную систему, называемую мультиэлектродным массивом, и простой настольный компьютер. Электродный массив — это фактически тарелка с 60 электродами, объединенными в сеть на самом ее дне, а поверх них и размещаются нервные клетки из мозга крысы. Они с большой скоростью делятся и наводят между собой живые «мостики», образуя нейронную сеть. Мозг и симулятор налаживают между собой двустороннее взаимодействие, похожее на то, которое возникает, когда нейроны человека получают и анализируют сигналы, поступающие от тела. Чтобы контролировать симуляционный полет самолета, нейроны вначале получают информацию из компьютера об условиях полета: летит ли самолет прямолинейно или поворачивает вправо или влево. Затем нейроны анализируют данные и отвечают, посылая сигналы в центр контроля самолета. Эти сигналы меняют направление полета, и новая информация посылается нейронам, создавая систему взаимодействия. ДеМарс и его коллега Хосе Принсипе получили на дальнейшие разработки проекта правительственный грант в 500 тыс. долл. Они планируют создать математическую модель, отображающую работу нейронов мозга. Хотя уже сейчас созданная Томасом ДеМарсом мозгоподобная культура нервных клеток способна управлять симулятором самолета, ученый заявляет, что основные достижения и открытия еще впереди.
Существует точка зрения, что соединение биологической и информационной систем может очень много дать как компьютерной технике, так и медицине. Так, например, японские специалисты ряда крупных компаний исследуют нейронные сети, растущие на электродных платах, для конструирования нового поколения компьютеров и роботов. В медицине такие системы используются при изучении эффектов новых фармакологических препаратов. Они дают возможность проследить in vitro, как влияют различные вещества на работу целой нервной сети, а не одной клетки, что практиковалось прежде (Анохин, 2015).
Для экспериментов с подключением нейронов к компьютеру обычно используют незрелые нервные клетки, которые способны устанавливать контакты между собой. Разрозненные клетки помещают в чашку Петри, где они растут и образуют нервную сеть. На дне чашки находится электродная плата с десятками полосок-электродов, которые пересекаются отростками нервных клеток. Каждый раз, когда нейрон генерирует нервный импульс, пластинка регистрирует его и передает в компьютер. Таким образом можно получить двухмерную картину, наглядно демонстрирующую, в какое время в какой части пластины работал какой нейрон.
Первопричиной создания таких нейроэлектронных гибридов были не нужды фармакологии или промышленности, а желание понять принципы работы мозга. Ведь до сих пор мы не можем разобраться в том, как решает свои задачи целый мозг, состоящий из десятков миллиардов нейронов. И потребовалась модельная система, аналогичная целому мозгу, но уменьшенная количественно и доступная для наблюдений.
Похоже, что нейронные культуры воспроизводят ряд свойств самоорганизации целого мозга. Например, они способны к самообучению. Когда компьютер при помощи электродов подает разнообразные сигналы нервным клеткам в чашке Петри, они начинают улавливать корреляцию между этими сигналами. Особенно эффективно такая система заработает, если установить обратную связь, т.е. через компьютер дать понять нейронам, что определенная их реакция — правильная, а другая — нет. Тогда система нейронов способна выработать целую стратегию поведения с большими потоками сигналов.
Ранее уже были созданы устройства, которые помогали расширить возможности людей с ограниченными двигательными функциями. Но такие устройства были проводными. Сейчас же сотрудники Брауновского университета создали сенсорный имплантат. Он представляет собой мозговой чип в виде титановой коробочки размером 56 × 42 × 9 мм. Такой чип передает сигнал, который регулируют нейроны головного мозга. В чипе есть все необходимое для передачи сигнала, и он не требует дополнительной аппаратуры, шлемов и проводов. Кстати, зарядка чипа осуществляется беспроводным путем, что не требует его выемки.
Мозговой чип уже назван чудом инженерной мысли, т.к. оцифровывает сигналы мозга и передает их технике со скоростью 24 Мб/с. Именно процесс считывания импульсов мозга считается уникальным, ведь наш мозг не передает сигналы в виде единиц и нулей, как это делает компьютер.
Сейчас проходит процесс усовершенствования устройства. Ученые пытаются сделать чип еще более компактным, надежным и скоростным. Мозговой чип уже был вживлен трем свиньям и трем макакам, и, по оценкам ученых, животные чувствуют себя комфортно и никаких отклонений их мозговой активности не наблюдается. В скором будущем такие чипы будут вживляться и в головной мозг человека.
Нейротехнологии для совершенствования творчества. Проект MEART — «Полуживой художник» — является совместной разработкой исследовательской группы SymbioticA (Гай Бен-Ари, Фил Гамблен, Иэйн Свитман, Орон Кэттс, Йонат Цурр, д-р Стюарт Бант) Школы анатомии и биологии Университета Западной Австралии (Перт, Австралия) и группы Стива Поттера (Steve Potter) (д-р Стив Поттер, Дуглас Баккум, Том Демарш, Радхика Мадхаван, Питер Пассаро) Лаборатории нейроинженерии Технологического института (Laboratory for NeuroEngineering Georgia Institute of Technology) Джорджии (Атланта, США). Само название MEART образовано из слов MEA (Multi-Electrode Array — мультиэлектродный массив) и Art (искусство). Столь же механистичной, как и словообразование, является инженерная реализация эстетического манифеста создателей биоробота. Электродная сеть соединяет крысиные нейроны с компьютером, который, с одной стороны, преобразует электрическую активность нервных клеток в двигательные инструкции роботу и, с другой, производит раздражающие электрические воздействия на нервные клетки. Компьютер, в свою очередь, уже через электронную сеть и в режиме реального времени сносится по интернет-протоколу TCP/IP с расположенной на другом краю Земли, в далеком г. Перт, Лабораторией совместных исследований искусства и науки (The Art & Science Collaborative Research Lab) Университета Западной Австралии (University of Western Australia). Именно здесь, на Австралийском континенте, потоки сознания крысиных нейронов изливаются на бумагу, претворяясь в художественные образы. Компьютерные команды находят наконец своего адресата — робота-руку, при помощи 3 цветных фломастеров запечатлевающего видения изолированного фрагмента крысиного разума.
Премьерный показ проекта состоялся в рамках международного фестиваля Ars Electronica (Линц, 2000) и широко освещался мировой художественной прессой. В дальнейшем MEART был представлен на различных выставках и фестивалях современного искусства, в т. ч. Biofeel (BEAP, PICA, Перт, 2002), ArtBots (Eyebeam Gallery, Нью-Йорк, 2003), Challenges for a Ubiquitous Identity (Ciber@RT, Бильбао, 2004), Australian Culture Now (ACMI, Мельбурн, 2004), Art Digita — 2004 (1st MBCA, M’ARS Gallery, Москва, 2005), Artrage Festival (Black Box Gallery, Перт, 2005), Strange Attractors: Charm between art and science (The Zendai Museum of Modern Art, Шанхай, 2006) и т. д.
Исследовательская группа SymbioticA Школы анатомии и биологии Университета Западной Австралии была образована в 2000 г. Группа SymbioticA — это уникальная научно-художественная лаборатория, которая занимается исследованием художественных перспектив научного знания вообще и биологических технологий в частности. В состав группы входят ученые, художники, исследователи и теоретики современного искусства. Исследовательская группа под руководством д-ра Стива Поттера (Stive Potter) была образована в 1999 г. в Лос-Анджелесе. В настоящий момент функционирует в рамках Лаборатории нейроинженерии Технологического института Джорджии (Атланта, США). С 1993 г. Стив Поттер работает над созданием новых видов материально-технического обеспечения для информационно-управляющих и исполнительных систем. За это время в его лаборатории был сконструирован ряд роботов, для управления которыми использовались нейронные массивы, выращенные на электронных подложках.
Нейротехнологии по созданию новых функций головного мозга. В 2013 г. ученые из Герцогского центра нейроинженерии успешно добавили лабораторным крысам новую возможность осязания. Благодаря черепно-мозговому имплантату животные получили возможности, которых у них не было от природы. Ученые добавили крысам возможность обнаружения инфракрасного света, который их глаз неспособен улавливать. Инфракрасный детектор был напрямую подключен к части мозга, которая отвечает за осязание. Сначала крыс приучали для того, чтобы получить воду в поилку, нажимать на светящуюся кнопку. После того как крысы уже знали, что воду дает только кнопка, которая светится, обычные светодиоды заменили инфракрасными и крысы смогли «видеть» уже и инфракрасное свечение и безошибочно его определяли. Ученые надеются, что в будущем можно будет восстанавливать способности человека к осязанию, если они были утрачены вследствие травмы или врожденной инвалидности (mir24.net).
Сегодня новую функцию мозга и периферических нервов можно создать путем комбинации хирургических методов и технологий нейроинтерфейса. Мы об этих технологиях уже говорили в разделе нейроинтерфейсов. Но здесь мы попытаемся поговорить о них именно с позиций создания новой функции мозга. Например, американцу, потерявшему обе руки в результате несчастного случая, удалось вживить высокотехнологичный протез. Новейшие искусственные руки, насыщенные электроникой, управляются силой мысли бывшего электромонтера Джесси Салливана (Jesse Sullivan). За 2 года до вживления импланта Джесси потерял обе руки в результате случайного прикосновения к оголенным проводам высоковольтной линии во время ее ремонта. Обе руки обуглились до самых плечевых суставов. Как и многим инвалидам в США, Джесси был вживлен обыкновенный электромеханический протез, позволявший двигать рукой с помощью нажатия кнопок остатками мышц. Однако через некоторое время специалисты Чикагского реабилитационного института предложили ему испробовать новейшую биомеханическую руку, которая сразу «поместила» обыкновенного электромонтера «на передний край современных биотехнологий» (цит.).
Для того чтобы снабдить Салливана новой рукой, хирурги пересадили часть оставшихся нормальных нервных окончаний с плечевого сустава на поверхность грудной мышцы. Потребовалось около 6 мес., чтобы эти нервы прижились на поверхности мышцы. В результате электроды, вживленные на поверхность мышцы, стали способны воспринимать генерируемые нервами сигналы, которые посылаются отсутствующей руке, и транслировать их в механические протезы, контролирующие передвижение искусственной руки. Как заявил лечащий врач Салливана, это первый случай, когда пересаженные нервные окончания используются для управления искусственной конечностью. Теперь когда Салливан думает о том, что он сгибает свою руку, мозг генерирует импульсы, которые должны управлять мышцами руки, и передает их по нервам. Электроды по тончайшим вживленным проводам передают эти импульсы управляющему блоку, контролирующему движения протеза. «Это хирургия уровня 1920-х годов, но используемая вместе с технологиями XXI века», — говорит один из лечащих врачей Салливана доктор Тодд Куикен (Dr. Todd Kuiken), практикующий в Чикагском реабилитационном центре. Некоторые исследователи ранее вживляли электроды непосредственно в головной мозг человека, на поверхность скальпа, а некоторые даже экспериментировали с детекторами нервной активности вне тела, однако новая технология пока неэффективна.
Нейротехнологии создания новых функций головного мозга очень тесно переплетаются с новыми трансгуманистическими идеями «перешивки», или перестройки, психики. Вопросы перестройки, или перепрограммирования, психики — самое психологически проблемное направление трансгуманизма. Гораздо более проблемное, чем усиление существующего интеллекта, наращивание мускулов или иммортализм (бессмертие). Потому что в большинстве случаев существующие нейротехнологии исполняют уже готовые желания, а здесь технология заставляет сначала разбираться в своих желаниях и их основах. При этом реальный, не лубочный прогресс, с учетом трансгуманизма и вмешательства в психику, напоминает комнату в кинофильме «Пикник на обочине» режиссера Андрея Тарковского. Люди думают, что она просто выполняет озвученные желания: стать богатым, известным, сильным, умным, полететь к звездам, омолодиться. А на самом деле она выполняет неозвученные, более сокровенные и фундаментальные желания, о которых сам человек может и не знать. Например, «счастья для всех и даром».
Отличие заключается только в том, что комната выявляла сокровенное желание человека сразу, а нейроинженерия будет делать это постепенно, и не для отдельного человека, а для всего человечества — в ходе практики использования людьми новых средств. Поначалу будет казаться, что нейроинженерия выполняет обычные сиюминутные озвученные желания. Но попробовал так — не нравится, попробовал сяк — не нравится, и постепенно стал нащупывать самое настоящее и самое важное. Единое для всех. Можно даже сказать, что прогресс нейроинженерии — это комната Стругацких с дополнительно предусмотренным правом на ошибку. Но все равно итог один: если комната начнет работать, сокровенное фундаментальное желание со временем будет выполнено. И в значительную часть наших современников, особенно интеллигенции, это вселяет ужас. Мощнейший страх человечества перед самим собой. Кстати, киногерои А. Тарковского побоялись комнаты, а герой братьев Стругацких — нет.
Другой, не менее фантастической задумкой американских ученых явилось желание создать между двумя разными людьми единую область сознания и как бы дополнять сознание одного человека сознанием другого. Американские ученые — специалисты из Университета Вашингтона — впервые в истории заставили сознания двух разных людей работать как единое целое (Rhao, Stakko, 2013). В ходе эксперимента Раджеш Рао, университетский профессор информатики, мысленно управлял действиями Андреа Стакко, научного сотрудника факультета психологии. На Рао при этом была надета специальная ЭЭГ-шапка, используемая для считывания электрической активности мозга ученого.
Деятельность области мозга, которая контролирует движение рук Стакко, стимулировалась посредством транскраниальной магнитной катушки. Данный интерфейс позволял перевести сигнал одного мозга в сигнал другого. В итоге Рао представлял, как шевелит рукой, тогда как движения выполнялись руками Стакко. Стоит напомнить, что несколько ранее ученым этого же университета удалось доказать на примере грызунов, что биологические существа способны считывать на расстоянии мысли друг друга.
В 2012 г. другие американские нейрофизиологи сообщили, что им удалось достичь определенного успеха в чтении и передаче мыслей (рис. 23). Так, ученым удалось декодировать поток мыслей в текст. Так, слова, которые человек хочет произнести, теперь можно прочесть на дисплее компьютера. Специалисты Калифорнийского университета «подслушивают» внутренний монолог подопытного при помощи специального устройства, преобразующего мозговые волны в звук и текст. Для того чтобы распознать мысли, ученые подключили к мозговым центрам подопытного, отвечающим за слух, множество специальных электродов, после чего стало возможным услышать, что человек произносит про себя. Разумеется, сигнал был обработан. Как известно, профессиональные музыканты, глядя на видеозапись игры пианиста с выключенным звуком, все равно слышат мелодию в голове. Именно этот факт и лег в основу проведенного американскими учеными исследования.
Нейротехнологии для лечения нервных болезней и психических расстройств у человека. Иллюстрацией создания этого направления нейротехнологий может быть интеграция разных научных школ нейроинженерии для целей практической медицины вообще и неврологии в частности. В 2011 г. Федеральная политехническая школа Лозанны (EPFL) и Высшая школа медицины Гарвардского университета Harvard Medical School (HMS) обнародовали совместную программу исследований (EPFL et Harvard Medical School dévoilent le programme collectif de recherches en neuroingénierie). В марте 2011 г. исследователи EPFL и Гарвардской медицинской школы собрались в Лозанне для обсуждения совместных научных проектов. Федеральная политехническая школа Лозанны и Высшая школа медицины Гарвардского университета Harvard Medical School объединили компетенции в сферах нейронаук и инженерного дела для разработок новейших методов лечения неврологических патологий, таких как параплегия и глухота.
Уже в ноябре 2011 г. участники этого проекта сообщили об эпохальном соглашении между Федеральной политехнической школой Лозанны (EPFL) и медицинским институтом Гарвардского университета — Harvard Medical School (HMS). Благодаря поддержке Фонда Бертарелли (de la Fondation Bertarelli), вложившего в проект 3,6 млн долл., 2 сильнейших университета мира смогли объединить свои усилия в изучении и разработке методов лечения сложных неврологических патологий. Швейцарская и американская высшие школы обнародовали программу совместных исследований: 6 научных проектов, которым суждено было стать премьерой в нейроинженерии и, вполне вероятно, совершить революцию в лечении неврологических заболеваний. Основываясь на последних достижениях генотерапии, оптической томографии и систем взаимодействия между человеком и компьютером, исследователи EPFL и Гарвардской медицинской школы решили попробовать найти новые клинические методы лечения патологий спинного мозга и слухового аппарата.
Пять из 6 научных проектов, включенных в программу Бертарелли по нейроинженерии, были направлены на разработку новых методов диагностики и терапии широкой гаммы заболеваний слуха, в первую очередь глухоты, вызванной генетическими отклонениями или внешними факторами. Шестой проект основывался на новейших достижениях EPFL в области стимуляции спинного мозга, и благодаря сотрудничеству с Гарвардом он должен быть выйти на следующий этап: конечная цель — разработать электронные механизмы, позволяющие восстанавливать нарушенные нервные соединения в спинном мозге.
Почему столь сложную задачу для объединения научных усилий поставили перед собой 2 самые передовые университетские медицинские школы мира? Главная проблема диагностики патологий слухового аппарата заключается в том, что врач не может рассмотреть вблизи ткани и клетки внутреннего уха. В последние годы введение микроэндоскопов немного облегчило задачу, но необходимость использования флуоресцентных маркеров по-прежнему затрудняет диагностику для человека. В то же время инженеры и физики EPFL уже давно разработали метод оптической визуализации без применения красящих веществ. Проф. Федеральной политехнической школы Лозанны, специалист по оптофлюидным системам Деметри Псалтис активно сотрудничает с гарвардскими врачами-отиатрами в целях разработки совершенно новой методики визуализации для внутреннего уха. Исследователи попытались оптимизировать инновационные методы диагностики, позволяющие насквозь просматривать ткани благодаря световым волнам. Конечно, тех великих целей, которые перед собой ставил проект, исследователи не добились, но сама попытка решения столь сложной задачи достойна уважения. Локальные цели, достигнутые в проекте, имеют большое практическое значение для современной медицины.
Другой проект этих межуниверситетских взаимодействий был создан для осуществления генотерапии для борьбы с врожденной глухотой. Генотерапия — относительно молодая область исследований, объединяющая принципы генной инженерии, биотехнологий и медицины для внесения изменений в генетический аппарат человека в целях лечения сложнейших заболеваний. Сегодня 1 ребенок из тысячи рождается с нарушениями слуха, часто вызванными генетическими патологиями. Метод генотерапии основывается на введении генетически модифицированных вирусов, транспортирующих «корректирующие» гены к клеткам с мутированными генами, вызвавшими заболевание. Первые неудачи подобных опытов охладили пыл специалистов, но недавние исследования возродили надежду, что генетические заболевания слухового аппарата можно излечивать генотерапией.
Основная проблема: на данный момент ученым известно не так много вирусов, способных проникнуть в чувствительные клетки слухового аппарата. Проф. Джеффри Холт из Гарвардского университета, специалист по физиологии слуховых клеток с мировым именем и врач детского госпиталя в Бостоне, совместно с экспертом Федеральной политехнической школы Лозанны в области генотерапии исследовал новые вирусы, способные транспортировать гены к пораженным тканям слухового аппарата. Опыты на лабораторных мышах привели исследователей к разработке метода, применимого для лечения врожденной глухоты у человека.
Еще один проект EPFL и медицинского института Гарвардского университета Harvard Medical School (HMS) был направлен на решение проблемы лечения глухоты путем управления регенерацией клеток и нейронов. Потеря слуха у пожилых людей в большинстве случаев вызвана отмиранием чувствительных слуховых клеток и нейронов во внутреннем ухе. Последнее может быть вызвано шумом, инфекциями и даже некоторыми лекарствами и сопровождается ощущением постоянного гудения в ушах. Слуховые клетки, к сожалению, не восстанавливаются так, как способны делать это клетки кожи, или крови, или, например, обонятельной выстилки носа. Первый этап на пути к лечению такого типа глухоты — найти способы регенерации слуховых клеток и нейронов внутреннего уха. Недавно исследователям Гарвардской медицинской школы удалось изолировать клетки внутреннего уха в процессе развития и генетически увеличить скорость их размножения.
Отныне задача заключается в том, чтобы трансформировать эти клетки в слуховые и нервные. Эксперт с мировым именем по развитию внутреннего уха, проф. Гарварда Лиза Гудрих работает вместе со специалистом EPFL по биоинженерии Матиасом Лутольфом над исследованием молекулярных изменений в размножающихся клетках внутреннего уха. С помощью компьютерной программы, позволяющей одновременно тестировать тысячи молекулярных комбинаций, ученые пытаются идентифицировать факторы, способные превратить размножающиеся клетки в слуховые и нервные. Если им удастся найти ключ к загадке природы, лечение приобретенной глухоты медикаментами может стать реальностью.
Другой проект EPFL и медицинского института Гарвардского университета Harvard Medical School (HMS) был направлен на решение проблемы разработки и создания лекарства против глухоты. Впрочем, с того момента, как ученые научатся регенерировать слуховые клетки в лаборатории, им предстоит немалый путь, прежде чем новую терапию можно будет применить для лечения пациентов. Сначала необходимо разработать новые лекарства для внутреннего уха и найти правильные химические компоненты, действующие целенаправленно и постепенно, в течение нескольких месяцев, не принося вреда чувствительным органам слуха. Поиском такого рода препаратов занимается отдельная группа исследователей, возглавляемая специалистом по регенерации слуховых клеток Гарвардской медицинской школы и биоинженером EPFL. Совместно они определяют, какие вещества и технологии применимы к внутреннему уху и способствуют восстановлению клеток. Зафиксированные гидрогелями или другими революционными материалами, данные вещества после введения в ухо действовали бы на оставшиеся там клетки, стимулируя их размножение и превращение в слуховые.
Еще один проект EPFL и медицинского института Гарвардского университета Harvard Medical School (HMS) был направлен на создание нового поколения слуховых имплантатов. Современные имплантаты слухового ядра, улитки, основаны на механизме, позволяющем обойти повреждения внутреннего уха передачей звукового сигнала прямо к слуховому нерву. Такой нейропротез в последние десятилетия пользовался невероятным успехом: более 200 тыс. экземпляров было продано во всем мире. Однако значительная часть заболеваний слухового аппарата не поддается действию нейропротеза, поэтому растет потребность в протезе, действующем не на слуховой нерв, а непосредственно на ствол головного мозга.
Первые попытки разработать подобный протез дали противоречивые результаты по двум причинам: либо электрическая стимуляция не позволяла достигнуть необходимого уровня точности, либо имплантированные электроды оказались недостаточно гибкими для прилегания к нервной ткани. Специалисты HMS совместно с коллегами из EPFL изучают возможности оптической стимуляции улитки и ствола головного мозга, позволяющей достичь большей точности в передаче сигнала. Параллельно исследователи Федеральной политехнической школы Лозанны разработали комбинированный электронно-оптический метод стимуляции, облегчающий манипуляцию имплантатами при введении в ухо.
Крайне интересным проектом EPFL и медицинского института Гарвардского университета Harvard Medical School (HMS) является проект, направленный на то, чтобы заново научиться ходить пациентам-спинальникам. Повреждения спинного мозга влекут за собой самые тяжелые последствия — параплегию без надежды на излечения, ибо головной мозг лишается возможности посылать сигналы в конечности. Исследователи Федеральной политехнической школы Лозанны уже сделали революционные открытия в области стимуляции спинного мозга с помощью электродов и медикаментов, способных «разбудить» парализованные участки, контролирующие движения ног. В лабораторных условиях животные с повреждениями спинного мозга снова смогли ходить, однако непроизвольно. Чтобы движение получалось осознанным и контролируемым, необходим сигнал из головного мозга. Исследователи Гарвардской медицинской школы параллельно работают над генетическими способами регенерации нервных связей, пострадавших при несчастном случае. Совместная работа направлена на разработку методов, которые в будущем, возможно, позволят парализованным пациентам снова встать на ноги (http://www.nashagazeta.ch/news/12456). В 2015 и 2017 гг. эти 2 ведущих медицинских учреждения мира проводили конференции по нейроинженерии, на которых они докладывали о проведенных научных исследованиях, и в сети представлены подробные отчеты об этой очень интересной и захватывающей работе; последние отчеты об этих исследованиях — от февраля 2019 г.
Несмотря на все экономические трудности, которые испытывает Испания в последнее время, она по-прежнему остается одной из передовых стран в области исследований и новых технологий. Так, в 2013 г. команда исследователей из Центра биомедицинской нейроинженерии Университета Мигеля Эрнандеса в Эльче (провинция Аликанте) представили модель робота, который помогает восстановить движения после инсульта. Робот получил название Roboterapist 3D и стал результатом 5-летней кропотливой работы испанских ученых. Модель робота запатентована на международном уровне. Основной особенностью данной модели является то, что с его помощью можно приступить к реабилитации сразу, как только больной приходит в себя после инсульта. По словам проф. Департамента систем и информатики университета, одного из членов исследовательской группы, робот позволяет приступить к восстановлению двигательной функции, когда больной еще находится в постели. Роботы, которые используются в настоящее время, позволяют начать реабилитацию после инсульта, только когда пациент уже может самостоятельно садиться.
Устройство, разработанное испанскими учеными, позволяет совершать движения во всех направлениях и положениях. Кроме того, робот снабжен системой, позволяющей создавать виртуальную реальность, что дает больным возможность вспоминать необходимые в быту движения и повторять их изо дня в день. Например, как подносить стакан воды ко рту, чтобы выпить его содержимое. Робот позволяет проводить все стадии реабилитации пациента. Сначала это элементарные движения. Затем, когда к больному вернулась определенная способность двигаться, следуют упражнения, направленные на восстановление движений, которые необходимы в повседневной жизни, например чтобы есть или пить.
В течение следующих месяцев планируется запуск новой модели в коммерческий оборот. Его использование планируется как в государственных, так и в частных клиниках Испании. Реабилитационные центры других стран Европы также заинтересовались данной разработкой. Как отмечают создали этого уникального робота, он дешевле, чем те, которые используются в настоящее время.
Пока речь идет о применении робота Roboterapist 3D только для восстановления больных, перенесших инсульт. Однако в дальнейшем планируется его использование при лечении тяжелых неврологических заболеваний: болезни Паркинсона, болезни Альцгеймера и рассеянном склерозе. Стоит отметить, что Испания находится в списке стран, лидирующих по количеству патентуемых изобретений, многие из которых предназначены для использования в области медицины.
Нейротехнологии для создания сверхинтеллекта. Когда мы думаем о сверхинтеллекте, мы в большинстве своем думаем про те возможности его использования, которые отображены в фантастической беллетристике: возможности почти мгновенно выучить любой язык, решать математические задачи любой степени сложности, вычислять со скоростью самого лучшего компьютера и реализовывать другие клише, на которые способны люди с высоким уровнем интеллекта и способностей. Истинный сверхинтеллект заключается кое в чем абсолютно другом — в способностях увидеть то, что может просмотреть все человечество; придумывать абсолютно новые идеи и уметь их осуществлять; понимать и находить самые фундаментальные законы и процессы природы, о которых не думали даже самые гениальные люди; понимать и улучшать свои собственные мыслительные процессы, и т. д. Кибернетический сверхинтеллект — не просто человек-гений, а нечто абсолютно сверхчеловеческое, могущее изменить весь мир в течение часа. Сверхинтеллект — новая ступень развития человека. Так же, как мы не можем написать книгу про героя более умного, чем мы, мы не можем пока понять и представить мысли и поступки настоящего сверхинтеллекта. Возможные пути создания сверхинтеллекта — это разработка способов загрузки информации в мозг, нейроинженерия и совершенствование систем искусственного интеллекта. Пока эти технологии находятся на стадии формирования научной идеи, зато другие нейротехнологии совершенствования памяти как основы искусственного интеллекта активно разрабатываются в рамках проекта «СПИНТРОНИКА», описанного H. Enaya et al. в J. Appl. Phys. (№104, 084306) в 2008 г., где постулирована возможность совершенствования памяти человека на магнитных поляронах. Сотрудники North Carolina State University (США) предложили устройство энергонезависимой магнитной памяти, основанное на магнитных поляронах. Структура и 2 логических состояния ячейки памяти приведены на рис. 24.
Квантовые точки соприкасаются с тонким ферромагнитным слоем. Дырки в них поставляются из квантовой ямы, находящейся в антиферромагнитном состоянии. Состояние «0» характеризуется тем, что в квантовой точке находится мало дырок. По отношению к спинам они имеют то же самое антиферромагнитное состояние, что и в квантовой яме, откуда они пришли. В этом состоянии спины магнитных ионов не возмущены. В логическом состоянии «1» происходит сильное обменное взаимодействие дырок с магнитными ионами через границу раздела. Возникает коллективный магнитный полярон, в котором спины дырок и магнитных ионов направлены противоположно друг другу. Энергетически становится выгодным наполнение квантовой точки дырками. Этот процесс ограничен нарастанием кинетической энергии дырок в квантовой точке, поскольку дырки являются фермионами. Оценки авторов показывают, что устройство может работать при комнатной температуре и время памяти достаточно для практических применений (Вьюрков, 2012).
Нейротехнологии создания физического бессмертия. Самым «крутым» апгрейдом человечества вообще и нейротехнологий в частности может стать возможность физического бессмертия. Все остальное — ничто по сравнению с этим результатом. Сегодня уже есть даже научно-этическое мировоззрение, построенное вокруг этой новомодной научной идеи. Реализация физического бессмертия требует взгляда на человека как на целостную физическую систему, составленную из отдельных взаимодействующих и взаимосвязанных рабочих частей, многие из которых имеют тенденцию стареть и разрушаться. Кембриджский биогеронтолог Обри ди Грей идентифицировал 7 причин, которые ведут к старению организма. Этот список полон, поскольку уже несколько десятилетий мы не наблюдали разрушительных процессов в организме, которые нельзя было бы объяснить с помощью одной из них. Победа над старением требует просто устранения этих причин, одна за одной. Это износ клеток, излишние клетки, хромосомные мутации, митохондриальные мутации, клеточные вредные вещества, внеклеточные вредные вещества и протеиновые перекрестные сшивки. Ряд исследователей уже работает над решениями этих проблем, но чтобы допустить возможность успеха, нужно относиться к старению как к болезни, а не неотъемлемой части жизни (www.transhumanism-russia.ru/content/view/548/116/). В своих научных статьях последних лет (Брюховецкий, 2020; Bryukhovetskiy A.S., Bryukhovetskiy I.S., 2020), опубликованных в России и за рубежом, мы также разделяем эту точку зрения на старение не как на закономерный процесс дряхления и увядания организма человека, а как на постгеномное (транскриптомное, протеомное и эпигенетическое) системное заболевание гемопоэтических стволовых клеток человека, эволюционно обусловленное и формируемое в процессе жизни человека в условиях неблагоприятной окружающей среды и необратимых изменений климата. Однако детали и тонкости этого научного видения проблемы старения лучше прочитать в нашей проблемной обзорной статье (Брюховецкий А. С., Брюховецкий И. С. Старение как системное возрастзависимое эпигеномное молекулярно-биологическое заболевание гемопоэтических стволовых клеток костного мозга человека и обоснование научных подходов к проблеме антистарения, увеличения продолжительности жизни и активного долголетия), опубликованной в №8 (116) журнала «Научный обозреватель» от 2020 г.
Нейротехнологии создания суперсилы. В начале 2006 г. группа ученых из Техасского Университета в Далласе под руководством д-ра Рея Баухмана разработала работающие на водороде и спирте искусственные мускулы, в 100 раз более сильные, чем природные. Леонид Тараненко, советский тяжелоатлет, до настоящего времени держит мировой рекорд по силе, поднимая штангу весом в 266 кг. Если заменить естественные мускулы Тараненко на мышцы из синтетических полимеров д-ра Баухмана, то он смог бы поднять 26 600 кг, или около 30 т. Это эквивалентно весу огромной яхты. Суперсила — интересная область в нанотехнологиях и нейротехнологиях, тем более что все уже сделано, остался только один шаг — собственно внедрение синтетических мускульных волокон в тело человека, что сегодня будет делом непростым и даже, наверное, незаконным. Однако это не означает, что это не будет сделано в течение пары следующих десятилетий. Дальнейшие исследования в этой области сделают искусственные мышцы безопасными для нормальных людей, несмотря на многочисленные этические вопросы. Плюс усовершенствованных мускулов — гораздо меньшая уязвимость человека к несчастным случаям. Также они смогут обеспечить бронезащиту от пуль или других форм нападения. Минус — в том, что некоторые захотят использовать сверхсилу для причинения вреда другим людям. Поэтому всем правоохранителям и даже ученым придется поставить себе еще более сильные мускулы.
Нейротехнологии для усовершенствования внешнего вида человека. В целом в мире существует согласие относительно того, кто красивый, а кто не очень. Многочисленные эксперименты показали, что хотя есть легкие субъективные отличия у каждого человека, мы все бессознательно подбираем знакомых в соответствии с биологически запрограммированными идеалами красоты, соответствующими повышенной приспособленности. До поры до времени это неизбежно. Единственный способ изменить это положение вещей — достичь нервной системы и разрушить некоторые связи. Пока этого еще не произошло, мы можем улучшить свою жизнь — и жизни тех, кто смотрит на нас, — используя возможности стать более красивыми и привлекательными. Мы чистим зубы, держим себя в форме, регулярно принимаем душ и выполняем много других рекомендаций для красоты. Некоторые из нас даже посещают пластического хирурга, с различными результатами. Согласно опросам, такие процедуры, как липосакция, обеспечивают очень высокий уровень удовлетворения пациентов. По мере того как безопасность и точность наших технологий модификации тела увеличивается, мы сможем менять свои лица и тела с минимальной суетой и максимальной пользой. Каждый сможет быть потрясающе привлекателен. И что самое замечательное, мы все сможем насладиться этим. Если каждый становится привлекательным, то мы не должны считать немного менее привлекательных уродливыми — наш мозг не работает так. Привлекательный человек привлекателен, неважно, есть рядом другие люди или нет. На планете, полной населения из привлекательных людей, наше качество жизни может здорово улучшиться.
Нейротехнологии психокинеза. В реальном мире психокинез — смесь наивной веры и псевдонауки. Несмотря на то что почти 30% людей думают, что можно воздействовать на объекты только силой мысли, история и свидетельства ясно показывают, что это полная ложь. В жизни никаких людей-экстрасенсов никогда не было, а если и были, то это отдельные люди с уникальными возможностями. Однако это не означает, что мы не сможем создать техносенсов искусственным путем. По мнению некоторых выдающихся ученых в области нанотехнологий (Drexler, 1999), к 2030 г. мы будем работать с «конструкционным туманом» — роем очень маленьких машин, летающих в воздухе и соединяющихся друг с другом с помощью робоманипуляторов. «Объединяя компьютерно-мозговые интерфейсы, подобные используемому Клавдией Митчелл для работы ее руки-протеза, с „конструкционным туманом“, мы будем иметь прямые мысленные контакты с могущественными внешними роботами, демонстрируя самый настоящий психокинез». «Конструкционный туман» при наличии необходимого программного обеспечения будет способен выполнять практически любое физическое задание или симулировать широкий спектр материалов. Поскольку «конструкционный туман» может действовать при низкой плотности, места все равно останется очень много. Комната, наполненная «конструкционным туманом», выглядела бы пустой, обычной, а люди в ней смогли бы двигаться и дышать нормально. Они заметили бы признаки полезного тумана только при его активизации — или центральным компьютером, или через нейроинтерфейс. Как только связь будет установлена, можно будет отдавать практически любые приказы на выполнение, правда при наличии соответствующих программ. Бросать предметы без использования мышечных усилий, левитировать, разбивать яйцо с другого конца комнаты, создавать энергетические шары, потоки и т. д. станет возможно все то, о чем каждый из нас читал в сказках, мечтал, но не мог осуществить.
Нейротехнологии аутопоэзиса (аллопоэзиса). Аутопоэзис по-гречески — самосоздание. Аллопоэзис — создание других. Наше тело участвует в обоих этих процессах все время — мы рождаемся как зародыши, которые развивают сами себя, пока не становятся взрослыми, а затем останавливаемся в развитии. Наше тело производит внешние вещи, но при этом обычно вовлекая в этот процесс тысячи других человек и даже целую экономику. В будущем будут кибернетические средства, которые сделают возможным личный аутопоэзис и аллопоэзис, работающие, вероятно, на основе молекулярной нанотехнологии. Используя любой доступный исходный материал, набор сложных конструкций и внутренние модули для нанопроизводства, мы сможем в буквальном смысле вдохнуть жизнь в глину. Если наши руки или ноги отказали, мы сможем построить нужные модули в других частях тела и воссоздать новые конечности. Вместо создания роботов на фабрике мы построим их сами. Возможности безграничны, но требуют большего развития технологий, чем все остальное, обсуждавшееся в этом списке.
Нейротехнологии контроля и слежения за человеком. Последние события все больше свидетельствуют о том, что глобальная элита и транснациональные корпорации переходят к открытому контролю над государствами и всем человечеством на основе новейших информационно-компьютерных нейротехнологий. Скандал с Эдвардом Сноуденом, который разразился в дни заседания Бильдербергской группы, которая, в свою очередь, собралась сразу после ежегодной конференции Google Zeitgeist, на которой подводились итоги анализа миллиардов запросов пользователей системы Google, лишь убедительно иллюстрирует современные возможности слежения за людьми с использованием нейросетей и алгоритмов больших данных. Мы не будем в этой книге останавливаться на этой группе нейротехнологий, т.к. о них и так очень много говорят в СМИ и очень мало в научной литературе. Мы не считаем себя специалистами в этой области систем современной безопасности на базе нейрокомпьютерных технологий, но их стремительное развитие и внедрение в повседневную жизнь гражданского общества уже сегодня становится реальностью и нашей обыденной повинностью. Постоянное наблюдение и надзор за населением и тотальный контроль за перемещением людей в нашей стране и за рубежом в период пандемии коронавирусной инфекции COVID-19 являются лучшей иллюстрацией существования этих нейротехнологий на практике.
Нейротехнологии манипуляции памятью человека. В 2002 г. исследователь Джон Харт (John Hart) опубликовал в издании Proceeding of the National Academy of Science (USA) доклад, в котором изложил довольно любопытные данные, проливающие свет на природу человеческой памяти, процесс ее деградации и возможности манипуляций ею. Харт проанализировал память с точки зрения электрических ритмов и пришел к выводу, что объекты в нашей памяти сохраняются в своем контексте: к примеру, вспоминая собаку, вы вспоминаете ее запах, издаваемый ею звук, кличку и то, как эта собака выглядела. Это обусловлено тем, что память задействует различные зоны мозга, отвечающие за разные уровни восприятия и координирующие различные органы чувств.
Удалось зафиксировать сам процесс припоминания. Было высказано предположение, что объединяющим разные части мозговых центров в процессе воссоздания образа является таламус (thalamus). Мозгу гораздо проще и удобнее синтезировать разноплановую информацию, исходящую из разных центров, а не хранить образ единым «блоком-кирпичом».
По мнению Харта, четко и емко вспоминаемый образ — результат синхронизированной работы различных мозговых центров. Упрощенно говоря, беспрепятственное прохождение электрического импульса — залог того, что называют хорошей памятью. Поэтому «короткое замыкание» — несинхронная работа центров — может приводить к выпадению некоторых фрагментов образов. Так, типичный пример несинхронной работы импульсов и дефекта в работе таламуса — забывание названия объекта: «Ну этот… ну как его… э… ну… с горбами… ну он еще в пустыне живет».
Согласно теории Харта, пациенты с болезнью Альцгеймера отнюдь не теряют память. Все «шаблоны» все еще хранятся в сознании больного, но они становятся недоступными для таламуса. Они словно закрыты в сейфы, ключ от которого утерян. Исследование Харта имеет большое значение. Если версия о непосредственной связи электрических ритмов с памятью подтвердится, возможно, со временем будет найден ключ к т.н. старческим болезням, большинство которых сопровождается резкими ухудшениями памяти.
Мозг может передавать функции памяти из поврежденных отделов коры на неповрежденные участки, и это путь к манипуляции процессами памяти. Ученые института физиологии им. А. И. Караева Академии наук Азербайджана выделили из мозга крыс 2 белка: один из них способствует запоминанию, другой же, наоборот, препятствует. Два эти белка в паре образуют молекулярный выключатель памяти. Люди, жалующиеся на память, не разделяют это понятие на составные части, поскольку им важен результат, т.к. они плохо помнят. А между тем память — это сложный, многоступенчатый процесс. Сначала новую информацию усваивают, потом она передается в долговременную память, и, наконец, ее надо суметь извлечь оттуда. На любом из этих этапов может произойти сбой, поэтому ученые неустанно исследуют механизмы регуляции памяти, в т.ч. роль отдельных белков. К сожалению, методы изучения мозговых белков суровы: чтобы их выделить, необходимо снести голову объекту исследования. По сравнению с этой процедурой другая стандартная операция — введение в желудочек мозга под наркозом антител или белков — кажется уже совершенным пустяком. Короче говоря, белки памяти изучают не на людях, а на крысах.
Для исследования крысиной памяти сотрудник института А. А. Месхиев (2015) использовал модель пассивного избегания. Животное помещали в светлый отсек экспериментальной камеры. Крысы предпочитают укромные уголки, на свету им неуютно, поэтому они обычно перебегают из светлого отсека в темный. Но там крысу ожидал слабый удар тока, после чего ее возвращали в светлый отсек, откуда и извлекали. Через 2 сут крысу опять водворяли в камеру на 5 мин. и смотрели, заглянет ли она в темный отсек, т.е. проверяли, крепка ли у нее память.
Из головного мозга крысы А. А. Месхиев выделил белок, названный им SMP-69. Если заблокировать действие этого белка (ввести в мозг соответствующие антитела), крыса не может запомнить, что темного отсека надо избегать. При этом в ее мозговых клетках идет интенсивный синтез другого белка, т.н. фракции 28. Если ввести в мозг фракцию 28, а затем пустить крысу в камеру, она ничему там не научится. Если же этот белок ввести после сеанса обучения, животное все помнит. Следовательно, фракция 28 блокирует сам процесс запоминания, но не хранение и воспроизведение информации. Два этих белка составляют в паре молекулярный выключатель памяти: при достаточном количестве SMP-69 память в порядке; при его нехватке фракция 28 образуется в избытке и отключает запоминание.
Как ни велик соблазн, результаты подобных экспериментов на животных нельзя автоматически переносить на людей. К человеку большая часть информации приходит в виде слов, а механизм словесной памяти иной, нежели запоминание действий и событий. Поэтому пока нет оснований говорить о том, что количество белка SMP-69 влияет на учебу.
Не менее интересными представляются работы по биоуправлению памятью человека и ложными воспоминаниями, представленные В. Аристарховым (2018). Причины ложных или искаженных воспоминаний психологам известны давно. Среди них и особый склад личности, заставляющий человека замечать одно и упускать из виду другое, и власть стереотипов, отправляющих восприятие по проторенной дороге привычных ассоциаций и наоборот, а также необузданная фантазия и внушаемость… Ложное воспоминание может сформироваться сразу после восприятия или даже в процессе самого восприятия, а может и через некоторое время, когда сознание случайно оживит событие перед мысленным взором или намеренно вызовет его из глубин памяти. Чем больше времени пройдет от события до момента воспоминания о нем, тем больше риск искаженного воспроизведения этого события в памяти из-за наложения новых впечатлений и переживаний, оставивших след в личности вспоминающего. Ф. Ницше в связи с этим отмечал, что «драму воспоминания ставил уже другой режиссер, не тот, который руководил постановкой восприятия». О психологических причинах ложных воспоминаний немало писал и Зигмунд Фрейд. Вся его знаменитая теория забывания, изложенная в «Лекциях по введению в психоанализ», в сущности, посвящена этой проблеме. Но ни З. Фрейд, ни его последователи не подозревали, что кроме психологических причин у ложных воспоминаний есть еще и чисто физиологическая основа. Это стало ясно в результате работ Надера (K. Nader) и Шaфe (G. Schafe), опубликованных в журнале Nature в 2000 г. (Nader K., Schafe G.E., Le Doux J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval // Nature. 2000. Vol. 406. P. 722–726). Тем не менее, как у каждого открытия, у него есть свои история и предыстория.
Предысторию мы находим в трудах невропатологов XIX в., которые описали во всех подробностях, как люди, перенесшие сотрясение мозга или психический шок, теряют память о тех событиях, что непосредственно предшествовали роковому событию. Иногда забвение охватывало у испытуемых более длительный период. Но с течением времени период «провала в памяти» сжимается во времени и «невспоминаемым» остается лишь небольшой отрезок, непосредственно примыкавший к тому мигу, когда человек потерял сознание.
Бесплатный фрагмент закончился.
Купите книгу, чтобы продолжить чтение.