16+
Конструкция и лётная эксплуатация воздушных судов

Бесплатный фрагмент - Конструкция и лётная эксплуатация воздушных судов

Особенности магистральных самолётов

Объем: 86 бумажных стр.

Формат: epub, fb2, pdfRead, mobi

Подробнее

Планер самолёта

Фюзеляж

Фюзеляж магистрального самолета, как правило, представляет собой полумонокок. Носовая, передняя и средняя части фюзеляжа представляют собой единую герметическую кабину, в которой размещаются кабина экипажа, пассажирский салон, багажно-грузовые отсеки (под полом пассажирского салона) и оборудование, которое по характеру работы должно находиться в герметических отсеках.

Полумонокок является разновидностью стрингерного фюзеляжа при наличии толстой работающей обшивки, т. к. внешние силовые факторы воспринимаются продольными элементами совместно с обшивкой.

Хвостовая часть фюзеляжа — негерметичная. К ней крепятся стабилизатор и киль.

Конструктивно фюзеляж состоит из обшивки и каркаса, состоящего из набора продольных (стрингеры) и поперечных (шпангоуты) силовых элементов, скрепленных между собой заклепками.

Пассажирские кабины обычно делятся на несколько салонов. Между салонами или по краям их размещаются буфеты-кухни, гардеробы, туалеты.

Для перевозки багажа и коммерческих грузов под полом пассажирских кабин и в отсеках фюзеляжа предусматриваются багажные отделения.

Гермокабина представляет собой наибольшую часть фюзеляжа.

В герметической части фюзеляжа имеются двери: входные по левому борту, служебные по правому борту и аварийных выхода.

Для загрузки багажных помещений багажом и грузами используются багажно-грузовые отсеки, люки которых расположены на правом борту и открываются наружу.

В носовой части фюзеляжа расположен отсек для передней опоры шасси. Закрывается отсек створками. К средней части фюзеляжа присоединен центроплан крыла.

Для предупреждения взлета самолета с открытыми дверями и люками, а также для оповещения экипажа о закрытом или открытом положении входных и служебных дверей и люков багажно-грузовых отсеков предназначена сигнализация положения дверей и люков.

На кадре «Двери» системного дисплея отражается мнемоническая картинка расположения дверей, на которой открытая дверь обозначена желтым цветом. После закрытия двери соответствующее обозначение на кадре изменяет цвет на зеленый.

Для экономии веса конструкции планера самолета «работающая» обшивка имеет переменную толщину в зависимости от испытываемых нагрузок. Изменение толщины обшивки производится путем химической или механической обработки. Стрингеры и шпангоуты фюзеляжа крепятся заклепками.

Крыло самолёта

Ряд конструктивных мер позволяет в значительной степени улучшить аэродинамические характеристики крыльев самолетов, летающих на больших скоростях. Практически все меры сводятся к увеличению различными способами несущих свойств концевых участков крыла на больших углах атаки.

Основными конструктивными мерами являются установка аэродинамических гребней, крутка крыла, использование крыльев с изменяемой стреловидностью и др.

Аэродинамические гребни уменьшают перетекание пограничного слоя вдоль крыла, что устраняет утолщение этого слоя на концевых участках крыла, приводящее к его более раннему отрыву по сравнению с прямым крылом.

Крутка крыла может быть геометрической, когда хорды не лежат в одной плоскости, либо аэродинамической, когда крыло набрано из различных профилей. Закручивая концевые участки крыла в сторону уменьшения углов атаки или применяя там более несущие профили, можно значительно ослабить срывные явления.

Крыло магистральных самолетов имеет моноблочную конструкцию и, как правило, состоит из трех частей: центроплана и двух консолей. Конструкция крыла включает в себя продольный и поперечный силовой набор. При этом в продольный силовой набор входят лонжероны, стрингеры и толстая «рабтающая» обшивка, а в поперечный силовой набор — нервюры.

Моноблочным называется крыло, у которого во всех сечениях изгибающий момент воспринимается верхней и нижней панелями, состоящими из толстой обшивки, подкрепленной набором мощных стрингеров. В полёте верхняя панель работает на сжатие, нижняя — на растяжение. Крутящий момент в моноблочном крыле воспринимается верхней и нижней панелями, а также стенками лонжеронов, в которых возникают касательные напряжения, направленные против часовой стрелки. Усилия от сдвига в вертикальной плоскости в моноблочном крыле воспринимаются стенками лонжеронов, в которых возникают касательные напряжения, направленные в полете вниз.

Крыло имеет кессонную конструкцию, внутренние объемы крыла являются баками для размещения топлива.

Конструктивно-силовая схема крыла определяется по названию силового элемента крыла, воспринимающего основную нагрузку на крыло, которой является изгибающий момент от подъемной силы крыла. На магистральном самолете изгиб крыла вверх воспринимается моноблочными панелями, состоящими из толстой «работающие» обшивки подкрепленной стрингерами. Поэтому крыло и является моноблочным. Тот факт, что крыло одновременно является и кессоном топливных баков, говорит, прежде всего, о его герметичности.

Кессон ограничен лонжеронами и герметичными нервюрами.

Крыло умеренной стреловидности имеет трапециевидную форму в плане.

На крыле установлены элементы основного управления самолетом и механизации крыла: элероны, предкрылки, закрылки и спойлеры.

Механизация крыла является неотъемлемой частью крыльев современных самолетов. К ней относятся устройства, позволяющие изменять аэродинамические характеристики крыла на отдельных этапах полёта.

Различают два вида механизации по выполняемым функциям:

— для улучшения взлетно-посадочных характеристик (закрылки и предкрылки);

— для управления в полете (спойлеры в режиме гасителей подъемной силы и в элеронном режиме).

Простой закрылок представляет собой отклоняющийся вниз до 45° участок хвостовой части крыла. Для повышения эффективности закрылка он делается щелевым. При отклонении выдвижного закрылка между его носком и крылом образуется профилированная щель. На современных самолетах используются двух- или трехщелевые закрылки.

Предкрылки представляют собой часть носка крыла у передней кромки, которая отклоняется вниз на угол до 25° и выдвигается вперед, образуя с крылом профилированную щель. Так же, как и закрылки, предкрылки уменьшают взлетно-посадочные скорости самолета, а самое главное — увеличивают критический угол атаки.

К средствам механизации относятся спойлеры (интерцепторы), используемые как тормозные щитки, воздушные тормоза, гасители подъемной силы, элементы управления по крену и т. д. При отклонении спойлеров вверх нарушается обтекание крыла, что приводит к уменьшению коэффициента подъемной силы. С помощью спойлеров можно изменять вертикальную скорость снижения, уменьшать длину пробега при посадке за счет более эффективного торможения колес шасси и повышать эффективность управления по крену.

Для повышения аэродинамического качества крыла служит вертикальные законцовки крыльев Винглеты (Шарклеты), в результате применения которых уменьшается расход топлива.

Хвостовое оперение

Современные магистральные самолеты, как правило, имеют стреловидное хвостовое оперение самолета классической схемы, которое состоит из горизонтального и вертикального оперения.

К горизонтальному оперению относятся стабилизатор и руль высоты. Стабилизатор может изменять угол установки в полете с помощью приводов управления.

К вертикальному оперению относятся киль и руль направления.

Примечание: Недостатком классической схемы является неизбежное затенение стабилизатора впереди находящимся крылом на определенных углах атаки, что может привести к бафтингу и потере эффективности руля высоты [1]. С точки зрения безопасности полетов нельзя называть такую схему хвостового оперения «нормальной».

Стабилизатор может изменять угол установки в полете с помощью приводов управления.

Стабилизатор и киль состоят из лонжеронов, нервюр и обшивки. Перед ним установлен форкиль.

Примечание: Использование термина «вертикальный стабилизатор» для киля — просто нелогично. Русский язык достаточно «богат», чтобы не использовать подобного рода терминологию.

Аэроупругость планера самолёта

Виды вибраций

Конструкция планера самолета, взаимодействуя с окружающей средой, может входить в режимы упругих периодических колебаний различных видов. Встречающиеся в процессе эксплуатации самолета упругие периодические колебания его частей могут быть сведены в следующие группы:

1. Собственные (свободные) колебания — периодические упругие колебания элементов конструкции или всего планера самолета, возникающие после внешнего однократного толчка и протекающие в изолированной системе. В этом случае характер колебаний определяется только внутренним строением системы, зависящим от ее массы, характеристик демпфирования и упругости. Энергия для протекания собственных колебаний поступает в систему от начального толчка, после чего система остается изолированной и никаких внешних силовых воздействий не испытывает. Колебания носят затухающий характер.

2. Вынужденные колебания — периодические колебания элементов конструкции или частей самолета, возникающие под воздействием внешней периодической силы и поддерживаемые ею. Периодичность этих колебаний определяется частотой изменения возбуждающей силы. Энергия для вынужденных колебаний поступает от действия возбуждающей внешней периодической силы. Характер колебаний определяется как внешней силой, так и физическими параметрами самой системы.

Переменные нагрузки вызывают колебания элементов конструкции самолета с частотами, равными частотам возбуждающих переменных сил. Наиболее опасным является случай, когда частоты сил, возбуждающих колебания, оказываются близкими или равными частотам собственных колебаний конструкции или ее элементов. Возникающие при этом резонансные колебания характеризуются резким увеличением их амплитуд, что может привести к разрушению конструкции. Для устранения возможности возникновения резонанса стараются так выполнить конструкцию и ее элементы, чтобы частоты их собственных колебаний были далеки от частот возбуждающих сил.

К источникам переменных нагрузок относятся:

— возмущения обтекающего самолет воздушного потока вследствие турбулентности атмосферы;

— возмущения потока, возбуждаемые самим летящим самолетом и действующие на него;

— вибрации, создаваемые двигателями.

Основными видами вынужденных колебаний частей конструкции современного самолета являются колебания, вызванные переменностью аэродинамических сил, действующих на самолет. Турбулентность атмосферы, а также «вихревые следы», оставляемые другими самолетами, могут быть мощными возбудителями вынужденных колебаний конструкции самолета.

Вихри, сбегающие с крыла и винтов, могут воздействовать на хвостовую часть фюзеляжа и оперение, вызывая их колебания.

Наибольшую опасность представляют вибрации от переменных аэродинамических сил, возникающих в результате срывов потока с расположенных впереди частей, получившие название бафтинга. Срыв потока может происходить с крыла, особенно на больших углах атаки самолета, а также с любой другой поверхности, находящейся в потоке воздуха: с фонарей кабин, зализов, оперения, пилонов и гондол двигателей, антенн и т. д.

Конструкция самолета является упругой, поэтому под нагрузкой она деформируется. В потоке воздуха это приводит к изменению аэродинамической нагрузки, что в свою очередь вызывает дополнительные деформации конструкции. Большие деформации влияют на величину и распределение аэродинамической нагрузки, на устойчивость и управляемость самолета, могут приводить к потере статической устойчивости конструкции. В процессе деформации конструкции возможно возникновение инерционных сил, которые совместно с аэродинамическими и упругими силами обусловливают колебания конструкции и могут стать причиной ее динамической неустойчивости.

Изучение взаимодействия аэродинамических, упругих и инерционных сил и влияния этого взаимодействия на конструкцию самолета составляет содержание теории аэроупругости. Аэроупругие явления принято делить на статические и динамические.

При статических явлениях силы зависят лишь от самих деформаций и не зависят от их изменения во времени. Сюда относятся местные деформации обшивки, деформации крыла, оперения, фюзеляжа и влияние их на перераспределение нагрузки, реверс рулей и элеронов, «всплывание» элеронов, перекручивание (дивергенция) крыла, оперения, пилона и т. п. Перечисленные явления обусловливаются взаимодействием аэродинамических и упругих сил.

При динамических явлениях силы зависят не только от деформаций, но и от изменения их во времени. Динамические аэроупругие явления (флаттер, бафтинг, трансзвуковые колебания рулей и пр.) обусловлены взаимодействием аэродинамических, упругих и инерционных сил.

Флаттер

Флаттер можно определить как динамическую неустойчивость конструкции в потоке воздуха. Возникает флаттер в результате взаимодействия аэродинамических, упругих и инерционных сил. Флаттеру могут быть подвержены крыло и оперение.

Флаттер — это самовозбуждающиеся незатухающие колебания частей конструкции, происходящие под действием аэродинамических сил, которые возникают при колебаниях и исчезают в отсутствии колебаний.

Флаттер — весьма скоротечное и опасное явление, которое обычно заканчивается разрушением самолета. Известно много различных форм флаттера, которые определяются возможными сочетаниями деформаций конструкции во время колебаний.

Наибольшую практическую значимость представляют следующие:

— изгибно-крутильный флаттер крыла (оперения), характеризующийся изгибом и закручиванием крыла (оперения);

— изгибно-элеронный флаттер крыла, сопровождающийся изгибом крыла и отклонением элерона;

— изгибно-рулевой флаттер горизонтального оперения, характеризующийся изгибом фюзеляжа и симметричным отклонением рулей высоты.

Флаттер наступает при определенной скорости полета, которую называют критической скоростью флаттера. Для каждой формы флаттера существует своя критическая скорость. У большинства самолетов она на 25—30% превышает максимально возможную скорость полета, для того чтобы полностью исключалась возможность возникновения флаттера.

Крыло может совершать колебания двух основных видов: изгибные и крутильные. Однако вследствие несовпадения линий центров тяжести с линиями центров жесткости сечений чисто изгибные или чисто крутильные колебания крыла практически невозможны. Вне зависимости от того, каков начальный импульс — изгибный или крутильный, колебания всегда совместны — изгибно-крутильные.

Рассмотрим упрощенную картину развития изгибно-крутильного флаттера крыла. Предположим, что под действием какого-нибудь возмущения крыло прогнулось вверх, а затем это возмущение исчезло.

Каждое сечение крыла характеризуется:

— положением центра тяжести, где приложена сила тяжести;

— положением центра жесткости, где приложена сила упругости;

— положением центра давления, где приложены приращения аэродинамических сил, действующих на крыло.

При отклонении крыла от нейтрального положения на него будет действовать сила упругости, стремящаяся возвратить крыло в нейтральное положение. Под действием этой силы крыло, отогнутое вверх, начинает двигаться вниз, а возникшая в начале движения сила инерции, приложенная в центре тяжести, будет за­кручивать крыло на пикирование относительно его центра жесткости.

Это изменение угла атаки вызовет дополнительную аэродинамическую силу, направленную вниз и приложенную в центре давления крыла, которая будет способствовать движению крыла вниз и его дальнейшему закручиванию. Благодаря этому в момент, когда крыло достигнет нейтрального положения и сила упругости станет равной нулю, крыло продолжит свое движение, а угол его закручивания будет максимальным отрицательным. Крыло, пройдя нейтральное положение, будет продолжать двигаться вниз. Возникшая сила упругости начнет замедлять скорость движения крыла вниз, а сила инерции — уменьшать закрутку крыла, уменьшая отрицательный угол атаки. С уменьшением угла атаки крыла будет уменьшаться дополнительная аэродинамическая сила и замедляться движение крыла вниз. В зависимости от величины закручивания крыла и дополнительной аэродинамической силы прогиб крыла вниз может оказаться больше, чем его начальный отгиб вверх. При дальнейшем движении крыла вверх картина действия сил повторится, но величина отклонения крыла вверх будет уже большей. Это вызовет увеличение силы упругости, а следовательно, и скорости возвращения крыла к нейтральному положению. В свою очередь последнее вызовет увеличение инерционной силы, закручивающей крыло на этапе его колебаний, и соответственное увеличение дополнительной аэродинамической силы. Амплитуда изгибных колебаний крыла и его закручивание будут возрастать и приведут к быстрому разрушению конструкции крыла.

При этих колебаниях возникают, конечно, и демпфирующие силы, тормозящие развитие колебаний.

До тех пор, пока работа демпфирующих сил, величина которых примерно пропорциональна скорости полета, больше работы возбуждающих колебания дополнительных аэродинамических сил, пропорциональных квадрату скорости полета, возникшие колебания будут затухать.

При скорости, равной критической скорости флаттера, работа возбуждающих колебания сил оказывается равной работе демпфирующих колебания сил. При скорости полета большей критической возникает флаттер.

С увеличением жесткости крыла критическая скорость изгибно-крутильного флаттера возрастает. Даже незначительное смещение центра тяжести вперед приводит к заметному увеличению критической скорости флаттера.

Смещения центра тяжести вперед можно достичь конструктивными мерами, в частности облегчением конструкции хвостовой части крыла или установкой в носовой части крыла специальных противофлаттерных грузов — балансиров.

Большое влияние на критическую скорость флаттера оказывают агрегаты и грузы, размещенные на крыле. Например, двигатели, вынесенные вперед, подобно балансирам увеличивают критическую скорость флаттера. Топливо, размещенное в отсеках крыла, также влияет на критическую скорость флаттера.

Изгибно-элеронным флаттером крыла называют такую форму колебаний, при которой имеют место изгиб крыла и отклонение элерона. Кручение крыла при этом предполагается настолько малым, что им можно пренебречь. Рассмотрим физическую картину этого вида флаттера.

Будем считать, что на крыле расположен несбалансированный элерон, у которого центр тяжести расположен позади оси вращения. Предположим, что возможно произвольное отклонение элерона при неподвижном («зажатом») штурвале за счет упругости проводки управления и люфтов.

Пусть, как и в случае изгибно-крутильного флаттера, крыло под действием какого-то возмущения прогнулось вверх, а затем это возмущение исчезло, и крыло было предоставлено само себе. Под действием силы упругости конструкции крыла оно начнет двигаться к нейтральному положению вниз. Вследствие действия силы инерции элерона он отклонится вверх. Это вызовет появление дополнительной аэродинамической силы, приложенной в фокусе крыла и направленной вниз. Ее величина пропорциональна отклонению элерона. Эта сила заставит крыло пройти нейтральное положение и отклониться вниз. Сила упругости будет препятствовать этому движению и тормозить его. Возникшая при этом сила инерции начнет уменьшать отклонение элерона, так что в крайнем нижнем положении крыла элерон окажется в нейтральном положении.

Под действием силы упругости крыло начнет отклоняться вверх, а сила инерции будет отклонять элерон вниз. Появится аэродинамическая сила, направленная вверх, и картина развития флаттера повторится.

Как и в случае изгибно-крутильного флаттера, возбуждающей является аэродинамическая сила. Если скорость полета превысит критическую, когда работа возбуждающей аэродинамической силы окажется больше работы сил, демпфирующих колебания, колебания начнут возрастать и могут привести к разрушению крыла. Эта скорость называется критической скоростью изгибно-элеронного флаттера.

Основные меры, направленные на повышение критической скорости изгибно-элеронного флаттера, сводятся к весовой балансировке элеронов, увеличению жесткости проводки управления и устранению люфтов в ней.

При весовой балансировке центр тяжести элерона совмещают с осью вращения или добиваются, чтобы он находился впереди оси вращения. В соответствии с этим говорят о 100%-ной весовой балансировке или перебалансировке элеронов. Достигается балансировка с помощью грузов (балансиров), устанавливаемых перед осью вращения элерона.

Горизонтальное оперение — поверхность, подобная крылу. Поэтому основные виды флаттера оперения имеют такую же природу, как и рассмотренные выше изгибно-крутильная и изгибно-элеронная формы флаттера крыла. Однако форм колебаний у оперения значительно больше, т. к. к собственным деформациям оперения добавляются еще изгиб и кручение фюзеляжа. Основными средствами повышения критической скорости флаттера оперения являются увеличение жесткости оперения и фюзеляжа, а также весовая балансировка стабилизатора и рулей.

Бафтинг хвостового оперения

Бафтинг представляет собой колебания элементов конструкции, обусловленные быстро изменяющимися аэродинамическими силами, вызванными срывным обтеканием впереди лежащих частей самолета. Срыв потока может происходить с крыла при полете на больших углах атаки.

Срыв потока может наступать на околозвуковых скоростях полета вследствие образования ударной волны и отрыва пограничного слоя с поверхности крыла. Это так называемый скоростной бафтинг. Наиболее часто встречается бафтинг хвостового оперения. Спектр частот пульсирующих нагрузок, действующих на оперение, находящееся в вихревом потоке за крылом, весьма широк, и, следовательно, колебания могут возникнуть на частоте, близкой к частоте собственных колебаний конструкции (резонанс).

Под воздействием срыва потока с крыла может возникнуть, например, бафтинг горизонтального оперения. При этом оперение начинает вибрировать, и амплитуды его колебаний быстро нарастают. Разрушение конструкции при бафтинге может происходить по истечении некоторого времени — вследствие явления усталости, а может происходить очень быстро (если энергия возбуждающих сил велика). Кроме того, затенение хвостового оперения приводит к потере эффективности руля высоты, что сказывается на управлении самолетом.

Так как основной причиной бафтинга являются срывы потока при обтекании отдельных частей самолета, то борьба с ним ведется, главным образом, путем улучшения аэродинамической компоновки самолета. Положительные результаты достигаются за счет выноса горизонтального оперения из зоны спутной струи или повышения изгибной жесткости оперения и фюзеляжа.

В ряде случаев полностью устранить бафтинг практически не удается. Поэтому для таких самолетов вводят ограничения на некоторых режимах полета.

Рассмотрим прямое крыло, у которого линия центров давлений расположена впереди оси жесткости. В потоке воздуха при положительном угле атаки на крыле создается подъемная сила, момент от которой закручивает его в сторону увеличения угла атаки. Такая деформация приводит к росту подъемной силы и дальнейшему увеличению угла атаки, и так до тех пор, пока упругий момент, соответствующий кручению крыла, не уравновесит момент аэродинамических сил. В некоторых условиях равновесие крыла оказывается невозможным, и оно под воздействием нагрузки апериодически отклоняется от положения равновесия. Явление статической неустойчивости конструкции в потоке воздуха принято называть дивергенцией, или перекручиванием, крыла, а скорость полета, при превышении которой равновесие между упругими и аэродинамическими моментами конструкции невозможно, — критической скоростью дивергенции.

Критическая скорость дивергенции возрастает с увеличением жесткости крыла при кручении.

Потеря эффективности и реверс элеронов

При отклонении элеронов на консолях крыла создаются дополнительные аэродинамические силы: направленная вверх на половине крыла с опущенным элероном и вниз на половине крыла с элероном, отклоненным вверх. Это приводит к нарушению равновесия самолета относительно оси х, возникновению кренящего момента в сторону крыла с поднятым элероном.

Под эффективностью элеронов обычно понимают реакцию самолета на их отклонение. Если при откло­нении элеронов угловая скорость крена нарастает быстро, элероны эффективны. Если самолет вяло реагирует на отклонение элеронов, то эффективность их низка. Реверс элеронов — это обратное действие элеронов, т. е. явление, при котором движение крена происходит в сторону крыла с опущенным элероном.

Потеря эффективности элеронов и реверс элеронов связаны с упругостью конструкции, обуславливающей такие деформации крыла, при которых происходит уменьшение эффективности кренящего момента и даже изменение его знака. При отклонении элеронов на участках крыла, занятых элеронами, возникает дополнительная нагрузка. Упругое крыло от этой нагрузки закручивается. Так как элероны расположены у задней кромки крыла, то крыло с опущенным элероном закручивается на уменьшение углов атаки сечений, а с поднятым элероном — на увеличение углов атаки. Чем больше приращение подъемной силы вследствие закрутки крыла, тем меньше силы на крыле, обусловленные отклонением элеронов, и ниже эффективность последних.

Величина приращения подъемной силы, вызванная закруткой крыла, растет с увеличением скоростного напора, а величина приращения подъемной силы, обусловленная отклонением элеронов, от скоростного напора практически не зависит. В результате с ростом скоростного напора разность между этими величинами уменьшается и при некотором его значении становится равной нулю. Элероны при этом полностью неэффективны. Скорость полета, соответствующую полной потере эффективности элеронов, называют критической скоростью реверса элеронов.

Элероны, расположенные в средней, более жесткой части крыла, в меньшей степени влияют на деформации крыла и поэтому сохраняют свою эффективность до больших чисел М полета.

«Всплывание» элеронов

«Всплыванием» элеронов принято называть одновременное отклонение элеронов в одну сторону. Возможность «всплывания» объясняется упругостью проводки управления и наличием в ней люфтов.

Отклонения элеронов за счет «всплывания» могут составлять 4—5°.

Одновременное отклонение элеронов вверх приводит к появлению кабрирующего момента. Если крыло прямое, момент, как правило, невелик и легко парируется отклонением рулей высоты. У самолета со стреловидным крылом момент на кабрирование получается значительным. Это может привести к выходу самолета на недопустимо большие углы атаки.

«Всплывание» элеронов может произойти также из-за температурных деформаций конструкции крыла и проводки управления. Уменьшение влияния «всплывания» элеронов на характеристики устойчивости и управляемости самолета можно обеспечить, увеличивая жесткость проводки управления, снижая величины шарнир­ных моментов элеронов или же принимая меры, направленные на уменьшение кабрирующего момента. Для уменьшения кабрирующего момента элероны располагают в средней части стреловидного крыла или выполняют каждый из двух секций: внутренней, которая работает в течение всего полета, и внешней, ко­торая вступает в работу лишь на взлете и посадке.

Источники давления гидросистемы

Принцип работы гидросистемы

Для приведения в действие подвижных элементов систем и агрегатов на самолете используют различные виды энергии. В зависимости от вида используемой энергии системы бывают гидравлические, газовые и электрические.

Применение гидравлических приводов на самолете вызвано их сравнительно малыми габаритами и массой, большим быстродействием и малой инерционностью частей исполнительных механизмов (в отличие от электродвигателей), простой фиксацией промежуточных положений исполнительных механизмов (в отличие от воздушных приводов). Масса и габариты гидравлического агрегата составляют примерно 10—20% массы и габаритов электрического агрегата подобного назначения и той же мощности.

Гидросистема самолета представляет собой сочетание двух частей: сети источников давления и сети потребителей.

Сеть источников давления предназначена для создания рабочего давления, аккумулирования энергии, регулирования давления в системе, распределения по потребителям и размещения некоторого запаса жидкости.

Сеть потребителей состоит из отдельных частей, каждая из которых предназначена для привода в действие какого-либо механизма.

Для обеспечения надежности и дублирования по гидропитанию потребителей гидросистема магистрального самолета имеет, как минимум, три независимых гидравлических подсистемы. Потребители гидросистем, влияющие на безопасность полетов, имеют дублированное гидропитание, т. е. работают от двух, трех, а на четырехдвигательном самолете даже от четырех гидросистем. Менее ответственные потребители и потребители, которые работают только на земле, управляются от двух или одной гидросистемы.

К основным потребителями гидросистемы относятся:

— органы основного управления полетом;

— предкрылки;

— закрылки;

— спойлеры;

— система уборки и выпуска опор шасси;

— система торможения колёс шасси;

— управление поворотом колес носовой опоры шасси;

— реверс тяги двигателей.

Основными источниками гидравлической мощности в гидросистемах являются механические насосы переменной производительности, работающие от двигателей.

Примечание: Насос переменной производительность имеет режим максимальной производительности при работающих потребителях и режим минимальной производительности при не работающих потребителях. Производительность насоса изменяется автоматически в зависимости от давления в гидросистеме. Минимальная производительность насоса необходима для охлаждения и смазки самого насоса.

Гидросистема с насосами переменной производительности используется в качестве основной на большинстве магистральных самолетов гражданской авиации. Повышение давления здесь создается аксиальными плунжерными насосами переменной производительности.

При выключении потребителей и достижении определенного давления, близкого к рабочему давлению гидросистемы, срабатывает автоматическое устройство, и производительность насоса уменьшается до минимальной, которая необходима для его смазки и охлаждения. Этот расход жидкости поддерживается дросселем минимального расхода, а охлаждение жидкости происходит в теплообменнике.

При включении потребителей и понижении давления жидкости насос перенастраивается на полную производительность.

Преимуществом гидросистемы с насосами переменной производительности является плавная разгрузка насосов, что уменьшает гидроудары.

Давление в гидросистеме, создаваемое при минимальной производительности насосов (при неработающих потребителях) составляет 210 кг/см². Кроме этого к основным параметрам гидросистемы относится количество гидрожидкости в баках гидросистем и температура жидкости.

В каждой гидросистеме кроме основных насосов предусмотрены резервные источники питания. В качестве таких используются гидротрансформаторы, установленные между гидросистемами, а также турбонасосные установки и электрические насосные станции. Иногда используются ручные гидронасосы.

Резервным источником давления в гидросистеме является электронасосная станция, предназначенная для создания давления в гидросистеме при отказе двигателя или при работе на земле.

В качестве аварийного источника гидравлической мощности применяется турбонасосная установка с приводом от набегающего потока воздуха.

Устройство передачи мощности (PTU) используется в качестве резервного источника давления при потере давления в одной из гидросистем.

Примечание: Устройство передачи мощности — это своего рода гидротрансформатор представляющий собой агрегат, состоящий из двух нерегулируемых моторов-насосов, соединенных общим валом. Каждый из моторов-насосов гидротрансформатора подключен к своей системе, и их жидкостные полости между собой не сообщаются. При работе гидротрансформатора один из моторов-насосов (в исправной гидросистеме) работает в режиме гидромотора и вращает второй мотор-насос, который работает как насос и создает давление жидкости в отказавшей гидросистеме. Поэтому можно использовать устройство передачи мощности для двухсторонней работы.

Бесплатный фрагмент закончился.

Купите книгу, чтобы продолжить чтение.