Памяти великого учёного современности, профессору А. В. Вачаеву посвящается
«Если мне удастся осуществить некоторые свои мечты, то это будет для блага всего человечества. Немедленный результат — это не цель учёного. Он не надеется, что его продвинутые идеи будут одобрены сразу. Его долг — заложить фундамент для тех, кто придёт после нас и указать им путь».
Никола Тесла.
Предисловие
Часть текста ранее уже публиковалась в книгах «Структура мироздания вселенной» и» Холодное электричество».
Холодный ядерный синтез или ХЯС специалисты определяют как реакцию слияния атомных ядер в холодном водороде, например, мюонный катализ. Всё остальное множество эффектов (более 4000 открытых публикаций), реакций и явлений, включающих признаки работы реакторов Филимоненко, Энергонива А. В. Вачаева, М. И. Солина, E-CAT A.Rossi, выстрелы С. В. Адаменко, К. Шоулдерса, А. Ф. Кладова, Л. И. Уруцкоева и многих других именуются как LENR. Объяснить эти реакции в рамках существующих концепций фундаментальной ядерной физики не удаётся. Именно, такое состояние этого вопроса случилось с работами указанных авторов. Комитет РАН РФ по лженауке констатировал — что этого не может быть, потому что не может быть никогда. Вот такие аргументы. Так или примерно так звучали заключительные фразы экспертиз этих явлений LENR, данные академиком Кругляковым.
Академик Рубаков также внёс свою лепту в этот процесс:
«Отталкивание протонов, которое не позволяет ядрам приблизиться на достаточно близкое расстояние, называется кулоновским барьером — и в термоядерных реакциях преодолеть его позволяет температура в миллионы Кельвинов. В холодном ядерном синтезе этих температур нет — следовательно, непонятно, за счет чего барьер преодолевается».
Борьба комиссии по лженауке РАН РФ с холодным ядерным синтезом дала свои плоды. Более 30-ти лет были под запретом официальные работы по теме LENR и ХЯС в лабораториях РАН, а реферируемые журналы не принимали статьи по этой теме. Только недавно вскрылась аналогичная возня с ХЯС в США в опубликованном Меморандуме по ХЯС доктора Юджина Маллова (Eugene F. Mallove). За это время в мировом масштабе началась мировая война, поголовные убийства в 2004 (Юджин Маллов в США, Кладов А. Ф.), травля (Вачаев А. В., Гареев Ф. А. в ОИЯИ, Уруцкоев Л. И. в Курчатовском институте), А. Росси в Италии и доведение до смерти многих учёных с пионерскими работами по LENR. История с Д. Кили и Н. Тесла, Э. Грэем, Т. Мореем повторилась уже на современном этапе. Опять «эти» жгут костры и людей за новые знания.
В таком случае, как говорил П. Л. Капица: — «Развитие науки заключается в том, что в то время как правильно установленные экспериментальные факты остаются незыблемыми, теории постоянно изменяются, расширяются, совершенствуются и уточняются. В процессе этого развития мы неуклонно приближаемся к истинной картине окружающей нас природы, понимание которой необходимо для того, чтобы все более полно овладевать и управлять этой природой. Наиболее мощные толчки в развитии теории мы наблюдаем тогда, когда удается найти эти неожиданные экспериментальные факты, которые противоречат установившимся взглядам. Если такие противоречия удается довести до большой степени остроты, то теория должна измениться и, следовательно, развиться. Таким образом, основным двигателем развития физики, как и всякой другой науки, является отыскание этих противоречий. Отсюда мы получаем основу для объективной оценки научного достижения. Нахождение всякого нового явления в природе надо оценивать тем значительнее, чем больше изменений оно может потребовать от существующих в данное время взглядов или теорий».
Надежды, возлагаемые учёными многих стран на ускорители заряженных частиц, с помощью которых возможно было узнать структуру атомных ядер не оправдались. По мнению автора книги, анализ результатов ускорения и столкновений пучков электронов, протонов и других заряженных частиц приводит к грубейшим ошибкам при использовании формулы для энергии и массы из СТО А. Эйнштейна. Массы в природе вообще не существует, а проявления эффекта «массы» на поверхности Земли — есть результат взаимодействия гравитационного поля частицы с центральным гравитационным полем ядра планеты и бозоны Хиггса здесь ни причём. Физика не математика.
Отсюда вывод — необходимо изменить теории моделей атома и его ядра на более подходящие, как А. Ф. Кладов применял капельную модель ядра для объяснения своих результатов по холодному распаду — синтезу химических и радиоактивных элементов.
При испытаниях реактора E-CAT A.Rossi в 2011 —2012 на её автора с подобными заключениями и математическими доказательствами обрушился весь научный мир — его называли мошенником и уголовником, как и в своё время Д. Кили, Н. Тесла, Э. Грэя, Т. Морея и многих других, кто замахнулся на устоявшиеся концепции и основы физики. После 2012 года, научный мир немного остыл и даже стал поддаваться искушению оказаться чуть ли не в первых рядах защитников LENR, а зачастую и поучаствовать в соавторстве.
Среди всей научной западной шумихи и трескотни вокруг ХЯС и LENR с 1989 года в глубине России, в Магнитогорске на базе известного Металлургического комбината профессор А. В. Вачаев разработал установку «Энергонива», на которой генерировал электроэнергию, наладил производство десятков килограммов заранее спланированных химических элементов и проводил исследования свойств своего холодного плазмоида, источник ГЭМД которого являлся атомно-ядерным котлом и создавал всё это. Причём производство электроэнергии и новых химических элементов проходило не на АЭС-реакторах с рабочим горючим из урана, а из дистиллированной воды. Эта установка работала на протяжении шести лет. Вот всего несколько цифр: из одного кубометра воды (или одной тонны) получается 214 кг железа, 20 кг марганца и выделяется 3,2 мегаватт-часа электроэнергии. Как подсчитал А. В. Вачаев, на реакцию холодного ядерного синтеза он израсходовал 5 киловатт, а на выходе получил 25 киловатт. Полученный серый порошок переплавили в тёмно-серую цилиндрическую болванку, но только распилить её или даже поцарапать не удавалось никакими инструментами. Разрезать болванку смогли лишь электроискровым методом. Холодный ядерный синтез позволяет в любых количествах получать не только вольфрам, платину или, скажем, рений, который в 10 раз дороже золота. Можно синтезировать любые элементы таблицы Менделеева, в том числе ещё не открытые. Всё это стало лишь поводом для зависти и травли, приведшей его к инфаркту и смерти.
Производство энергии. В настоящее время производство энергии в будущем возлагается на Управляемый термоядерный синтез. Уже идёт подготовка и строительство реактора ИТЕР во Франции. Однако опережающими темпами идёт подобное движение по освоению и пониманию Холодного ядерного синтеза во многих ведущих странах. Почему происходит такое? Ответ очевиден. Знание только 4, 9% свойств вещества исключает движение вперёд. Как показал анализ успешных испытаний реакторов Солина, Вачаева, Адаменко, Уруцкоева, Шоулдерса, Кладова, Росси и многих других выделение энергии наиболее эффективно происходит в конденсированных кластерах с определённой критической массой. Активация процесса начинается в точке и развивается в очень короткое ядерное время. Непрерывность и автономность процессов достигается в проточном режиме одновременным воздействием механических и электромагнитных действий энергии. Наиболее простым и доступным сырьём топлива является вода (техническая, сбросы радиоактивных отходов с АЭС и т.д.). Поэтому наиболее перспективной для промышленного освоения является макет реакторной ячейки Вачаева. Для поддержания устойчивого автономно работающего непрерывного режима применяемые средства образуют единую синхронизованную систему взаимно-перпендикулярных механических и электромагнитных вихревых процессов в точке расположения действующей микрошаровой молнии. А все вместе взаимодействующие одновременно каскадные многофотонные процессы от точки до поверхности всего объёма образуют действующую синергетику реакторной ячейки рождения новых атомов из плазмы атомных ядер и атомов воды с примесями других веществ.
5 марта 2015 года в стенах ВНИИАЭС в его честь был посвящён доклад на тему «Переработка радиоактивных отходов с помощью реактора А. В. Вачаева на базе LENR», а также четыре лекции автора на тему «Холодный ядерный синтез».
Сейчас, оглядываясь на прошедшие годы с высоты 2024 года на достигнутые успехи мировым научным сообществом в совершенствовании таких реакторов, необходимо акцентировать внимание всех учёных на эту установку «Энергониву» и «Энергониву-2». Её значимость намеренно замалчивают на западе. Хоть профессор А. В. Вачаев и был экспериментатором от бога, но его установку можно смело назвать открытием века, рангом значительно выше чем открытие деление урана и ядерной бомбы. ЭТО открытие свойств урана сейчас порождает только проблемы и непрекращающиеся аварии-катастрофы на АЭС с выбросами радиоактивных кластеров в воздух, воду, а также и серьёзные проблемы во всём мире с хранением отработанных ТВЭлов. Реактор Вачаева лишён всех этих недостатков и существенно отличается методом атомной и ядерной дезинтеграции от всех существующих, более того он способен ещё и утилизировать любые его радиоактивные отходы — «подметать пол» в Хозяйстве АЭС, т.е. уничтожать ЖРО, как в открытом, так и в замкнутом ЯДЕРНО-ТОПЛИВНОМ ЦИКЛЕ оборота РАДИОАКТИВНЫХ ОТХОДОВ в системе АЭС.
Из анализа уже действующих реакторов LENR следует, что протон-нейтронная (в том числе и дейтонная) модель атомного ядра неспособна объяснить их работу и механизм получения продуктов переработки.
Для исследований структуры атомного ядра и кварк-глюонной плазмы были предназначены самые дорогостоящие установки в мире и которые завершились строительством Большого адронного коллайдера.
Большой адронный коллайдер ускоритель заряженных частиц на встречных пучках предназначен для разгона протонов и тяжѐлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 000 учѐных и инженеров из более чем 100 стран. Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным из-за того, что он ускоряет адроны; коллайдером из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения. В ускорителе сталкивают протоны с суммарной энергией 14 ТэВ, а также ядра свинца.
Описание работы БАК с протонами.
Атомы водорода поступают строго дозированными порциями в камеру линейного ускорителя (фото 1), там от них отделяют электроны, оставляя только ядра водорода.
Протоны несут положительный заряд, что позволяет придавать им ускорение при помощи электрического поля. Отсюда протоны будут двигаться со скоростью равной 1/3 скорости света. Теперь они готовы поступить в бустер или во вторую систему ускорения протонов.
Чтобы максимально повысить плотность потока частиц их разделяют на 4 части, каждая из которых поступает в отдельное кольцо бустера (накопителя). Линейное ускорение здесь уже не эффективно, поэтому применено движение по кругу длинной пути 157 метров. Чтобы придать частицам большую скорость, они проходят по кругу много раз, при этом на них воздействуют пульсирующим электрическим полем. Мощные магниты помогают придать частицам нужное направление и удержать их на круговой траектории. Кольцевой ускоритель разгоняет протоны до 91,6% скорости света, при этом собирает их в плотный пучок. После этого частицы из 4 колец собираются воедино и поступают в протонный синхротрон — эта третья система ускорения протонов. Протяженность синхротрона 628 метров это расстояние протоны проходят за 1,2 секунды, разгоняясь до 99.9% скорости света. Именно здесь достигается точка перехода. К энергии движения частиц добавляется энергия электрического поля, но это не приводит к дальнейшему разгону, потому что частицы уже почти достигли максимально возможной скорости света. Но в результате такого воздействия увеличивается масса протонов, если говорить кратко, то протоны не могут ускоряться, а становятся тяжелее. На этой стадии энергия каждой частицы равняется 25 ГЭВ, при этом протоны становятся в 25 раз тяжелее чем в состоянии покоя.
Теперь начинается 4 стадия системы ускорения протонов. Протонный суперсинхротрон — огромное 7-ми километровое кольцо. Его задача увеличить энергию протонов до 450 ГЭВ. Далее пучки протонов будут готовы к перемещению в большой адронный коллайдер. В нем проложены две вакуумные трубы, по ним в противоположных направлениях, движутся пучки протонов. При помощи специальных устройств новые порции протонов поступают в трубы так, чтобы не мешать движению уже загруженных туда пучков. По одной трубе частицы движутся по часовой стрелки, а по другой — против. Эти трубы пересекаются в четырех местах, где установлены детекторы. Именно здесь протоны можно столкнуть друг с другом. Энергия столкновения в два раза превышает запас энергии каждого протона. В течение получаса в коллайдер поступают около 2800 порций частиц. Все это время коллайдер придает дополнительную энергию частицам двигающимся почти со скоростью света. Каждую секунду протоны проходят 27 километровый круг и более 11 тысяч раз постоянно получая, импульсы ускоряющего электрического поля. Энергия каждого протона уже составляет 7 ТэВ, а масса в семь тысяч раз больше нормальной.
Теперь протоны готовы к столкновению. Направляющий магнит обеспечивает необходимую для этого траекторию их движения. Общая энергия двух сталкивающихся протонов равна 14 ТэВ. Всплеск (фото 1а) от столкновения можно наблюдать в течение двух секунд.
Траектории выделившихся в результате столкновения частиц анализируют компьютеры, к которым подключены детекторы.
Результаты. Трехмерный портрет протона
Устройство протона по-прежнему остается одной из самых интересных и до сих пор неопределённых тайн в физике элементарных частиц. Более того, в последние годы интерес к ней снова возрос, потому что физики поняли, как получить «трехмерный» портрет быстро движущегося протона, который оказался гораздо сложнее портрета неподвижного протона.
Задачи. Исследования кварк-глюонной плазмы (КГП) — экстремального состояния материи — являются одним из основных направлений работы БАК. К этой задаче добавилось исследование природы сильного взаимодействия еще в одном крупном научном проекте ЦЕРН на установке NA61/SHINE.
Эксперимент ALICE путем лобовых столкновений ультрарелятивистских ядер позволяет воссоздать процесс появления кварк-глюонной плазмы. Установка ALICE — это огромный физический прибор, включающий в себя более 20 детекторных систем. По размеру она сопоставима с домом высотой 16 и длиной 26 метров, весит 10 тысяч тонн и располагается на глубине 56 метров под землей в одной из точек, где пересекаются пучки протонов и ядер, ускоряемых БАК. С 2008 по 2018 год ALICE стабильно работала на пучках Большого адронного коллайдера и вела регистрацию столкновений как протонов, так и ядер свинца, разогнанных почти до скорости света.
Второй фундаментальный научный эксперимент ЦЕРН, — это NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) на Протонном cуперсинхротроне (SPS), одном из ускорительных колец БАК. В эксперименте изучаются адронные конечные состояния, возникающие при взаимодействии различных частиц пучка (пионов, протонов и ядер бериллия, аргона и ксенона) с множеством фиксированных ядерных мишеней. В NA61/SHINE работают 140 физиков из 14 стран и 28 институтов. Основные цели эксперимента NA61/SHINE — исследование природы сильного взаимодействия, поиск критической точки ядерной материи.
Данные, полученные от столкновений встречных пучков ядер золота и свинца (схема эксперимента — внешнее воздействие ядро-ядро с откликом рождения «сжатая-расплавленная» кварк-глюонная плазма), а также пучков золота и дейтерия, во многом противоречивы и до сих пор находятся в стадии поиска ответов на вопросы:
— удалось ли при столкновениях ядер свинца или золота сжать вещество до образования кварк-глюонной плазмы?
— для исследования чётности в кварк-глюонной плазме изучалось движение образующихся микрочастиц во внешнем магнитном поле, создаваемом магнитами детектора,
— кварки различных «ароматов» по-разному движутся в магнитном поле,
— почему так противоречиво ведут себя «струи переходов ионы-адроны-кварки-глюоны»?
— необходимое время регистрации следов этой неуловимой формы чрезвычайно горячей и плотной ядерной материи составляет величину порядка 10—23 секунды,
— частицы рождаются более интенсивно, чем ожидалось, а стадия их рождения в сгустке — fireball длится значительно меньшее время, чем предсказывалось теоретически; также, вопреки расчетам, стадия рождения частиц укорачивается с увеличением энергии,
— найдены ли обещанные бозоны Хиггса с массой 125 или 247 Гэв, отвечающие за массу элементарных частиц, и является ли 5—6 сигм превышения над стандартной ошибкой достоверным результатом открытия этих новых частиц?
— какова природа материи, спина, электрического заряда элементарных частиц и атомных ядер?
Итак результаты от вложенных в строительство и исследования в БАК колоссальных средств множества стран более чем «скромны», если не сказать более скептически.
Введение
В 2021 году исполнилось 60 лет со дня рождения идеи лазерного термоядерного синтеза. Родилась она в голове будущего нобелевского лауреата Николая Геннадьевича Басова и была впервые публично им высказана на заседании Президиума АН СССР в 1961 году, а уже через три года теоретически им же обоснована.
Потребовалось ещё четыре года напряженной работы, и 18 апреля 1968 года на уникальной установке, созданной в Физическом институте им. П. Н. Лебедева, были зафиксированы первые нейтроны.
Проведенная спустя полвека тщательная проверка результатов эксперимента показала, что это был холодный лазерный ядерный синтез. Что это означает? Это означает, что 18 апреля 1968 года группой Николая Басова впервые в мире с помощью лазера была получена реакция холодного ядерного синтеза. В октябрьском номере «Журнала экспериментальной и теоретической физики» — журнала Президиума Российской академии наук была опубликована статья, в которой авторы приходят к такому неожиданному и сенсационному выводу. А ведь именно направление холодного ядерного синтеза первым преодолело порог энерговыгодности, когда энергетический реактор выдает энергии больше, чем тратится на его запуск и работу. Его официальное признание произошло стремительно и без шумных заявлений после 22-й Международной конференции по ядерным исследованиям в конденсированных средах, состоявшейся в итальянском Ассизи в сентябре 2019 года. В Японии, США, Индии, Китае, Евросоюзе, Канаде, Южной Корее началось финансирование государственных программ и крупных проектов по холодному синтезу. Даже Российский фонд фундаментальных исследований объявил совместный с Италией грант на исследования в области холодного синтеза, правда, пока с крайне скудным финансированием.
В пятой статье цикла Джонатана Тенненбаума о боро-водородной мечте ядерной энергетики «В решении проблемы зажигания ядерного синтеза происходят заметные изменения», публикующегося на портале Asia Times, рассказывается о полученных за последние годы результатах в освоении нерадиоактивной реакции ядерного синтеза «бор + протон» с помощью ультракоротких лазерных импульсов.
Экспериментальные исследования с конца 1990-х годов выдающегося китайского физика Чжан Цзе и других учёных установили ясность в ключевом моменте: взаимодействие между лазерным импульсом и мишенью резко меняется, когда длина импульса уменьшается с наносекунд (миллиардных долей секунды) до пикосекунд (триллионных долей секунды) или ещё меньше. Упоминаемая в статье Пондеромоторная сила, вызванная электрическим и магнитным полями лазерных импульсов, выполняет свою работу задолго до того, как успевают развиться нагрев и результирующие силы давления, но для этого нужны пикосекундные или фемтосекундные лазеры. А после недавнего эксперимента на пражской лазерной системе Asterix (PALS) в Чешской Республике, сообщается о рекордном выходе 1011 альфа-частиц, достигнутом за счет фокусировки лазерного луча субнаносекундной длительности и мощностью 600 Дж на мишени из нитрида бора… Показано, что такая удивительная цифра достигнута не за счёт термоядерного механизма. А за счёт какого механизма?
В будущей энергосистеме основными источниками электрической и тепловой энергии будет множество распределенных по сети точек небольшой мощности, что в корне противоречит существующей парадигме в атомной отрасли наращивать единичную мощность энергоблока для снижения удельной стоимости капвложений. В этом отношении LENR установки очень гибкие и это уже продемонстрировали М. И. Солин, А. В. Вачаев и А. Росси, в то время, как другие исследователи продолжают «удивлять мир» незначительными эффектами.
Итак, семь независимых экспертов (пять из Швеции и два из Италии) провели испытания высокотемпературного аппарата E-Cat, созданного Андреа Росси, и подтвердили заявленные характеристики. Напомним, что первая демонстрация аппарата E-Cat, основанного на низкоэнергетической ядерной реакции (LENR) трансмутации Никеля в Медь, состоялась 10 лет назад в ноябре 2011г.
Эта демонстрация вновь, как и знаменитая конференция Флейшмана и Понса в 1989г, возбудила научное сообщество, и возобновило непрекращающийся до сих пор спор между приверженцами LENR и традиционалистами, яростно отрицающими возможность подобных реакций.
Следует напомнить, что уже в 1992 году М. И. Солин создал промышленный реактор для производства электроэнергии, магнитной, тепловой и звуковой энергии и когерентного электромагнитного излучения, т.е. на 20 лет раньше А. Росси и более совершенный, но основанный на тех же физических принципах многофотонного ИК-излучения разогревом твёрдого тела до высоких температур, при которых рабочее тело насыщается до предела в центре этим излучением ЭМВ. На этом же физическом принципе работает холодный ядерный синтез в лазерной искре, полученной от лучей коротковолновых фотонов множества лазеров, размещённых на поверхности сферы и направленных в её центр. Отсюда и определение такого квантового ядерного реактора нового образца (как его назвал Солин) — функционирует как объемный резонатор-аккумулятор электромагнитной энергии, в результате чего достигается высокий КПД — до 85% (КПД атомной электростанции — 35%). Несколько позже этот ядерный реактор М. И. Солин усовершенствовал Патентом РФ №2 173 894 от 23.08.1999 года. Помимо этого, Солин пришел еще к одному открытию: при ядерной трансмутации (холодный ядерный синтез) не только наблюдается колоссальный выброс энергии, но и одни химические элементы преобразуются (трансмутируют) в другие. В итоге работу автора поддержал Российский Фонд Фундаментальных Исследований и выдал грант №96-03-34216а.
Теперь указанная выше независимая экспертиза подтвердила, низкоэнергетические ядерные реакции существуют и позволяют генерировать тепловую энергию с удельной плотностью в 10,000 раз большей, чем нефтепродукты.
Аппарат E-Cat А. Росси вырабатывает тепловую энергию с удельной мощностью 440кВт/кг. Для сравнения, удельная мощность энерговыделения реактора ВВЭР-1000 составляет 111 кВт/л активной зоны или 34,8кВт/кг топлива UO2., БН-800 — 430кВт/л или ~140кВт/кг топлива. Для газового реактора AGR Hinkley-Point B — 13,1 кВт/кг, HTGR-1160 — 76,5 кВт/кг, для THTR-300 — 115 кВт/кг. Сопоставление этих данных впечатляет — уже сейчас удельные характеристики прототипа LENR- реактора превосходят аналогичные параметры лучших существующих и проектируемых ядерных реакторов деления. Теперь эти параметры следует сравнить с параметрами, полученными М. И. Солиным в 90 -е годы.
Доктор А. А. Рухадзе следующим образом подводит итог таким работам:
«Из имеющихся на настоящий момент результатов следует, что низкоэнергетические ядерные реакции — это не синтез и не распад, а, по-видимому, некие коллективные ядерные превращения, которые протекают при энергиях недопустимо низких для термоядерных реакций и дают изменение изотопного состава и большое тепловыделение при полном отсутствии остаточной радиоактивности.»
Перед тем как перейти к механизму процессов холодного ядерного синтеза, необходимо вспомнить о неполноте механизмов существующей теории фотосинтеза.
Фотосинтез
Самое наглядное представление о законах природы демонстрируется самой природой — это фотосинтез или холодный атомно-молекулярный распад-синтез с производством свободного кислорода под внешним воздействием фотонов света. Основным органом фотосинтеза является лист. Он анатомически приспособлен к поглощению энергии света и ассимиляции углекислоты. Плоская форма листа, обеспечивающая большое отношение поверхности к объёму, позволяет более полно использовать энергию солнечного света. Вода, необходимая для поддержания и протекания фотосинтеза, доставляется к листьям из корневой системы. Для общего роста растений, как общепризнано в агротехнологии, необходимо лишь тепло, влага, удобрения и свет. Поэтому много противоречий в современной теории фотосинтеза в части участия и количественного баланса с кислородом вызывает углекислый газ атмосферы (всего то 0,03%).
И тем не менее вот как описывается механизм фотосинтеза в САП (фото1б).
На первом этапе происходит поглощение квантов света пигментами, их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы (пластохинону).
На втором этапе происходит разделение зарядов в реакционном центре. Молекула воды теряет электрон под воздействием катиона-радикала, образовавшегося из молекулы хлорофилла после потери ей своего электрона и передачи его пластохинону на первом этапе.
Одновременно с этим процессом происходит перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НДФН. Первые два этапа вместе называют светозависимой стадией фотосинтеза..
Третий этап заключается в поглощении второй молекулой хлорофилла кванта света и передаче ею электрона ферредоксину. Затем хлорофилл получает электрон после цепи его перемещений на первом и втором этапах. Ферредоксин восстанавливает универсальный восстановитель НАДФ.
Четвёртый этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии.
В ходе световой стадии фотосинтеза образуются высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФ, использующийся как восстановитель. В качестве побочного продукта выделяется кислород.
Хлорофилл имеет два уровня возбуждения: первый связан с переходом на более высокий энергетический уровень электрона системы сопряжённых двойных связей, второй — с возбуждением неспаренных электронов азота и магния порфиринового ядра. При неизменном спине электрона формируются первое и второе возбуждённые состояния, при изменённом — триплетное первое и второе.
Второе возбуждённое состояние наиболее высокоэнергетично, нестабильно, и хлорофилл за 10−12 с переходит с него на первое с потерей 100 кдж/моль энергии только в виде теплоты.
Передача энергии идёт резонансным путём (механизм Фёрстера) и занимает для одной пары молекул 10−10—10−12 с, расстояние, на которое осуществляется перенос, составляет около 1 нм. Передача сопровождается некоторыми потерями энергии (10% от одного типа хлорофилла к другому, 60% от каротиноидов к хлорофиллу), из-за чего возможна только от пигмента с максимумом поглощения при меньшей длине волны к пигменту с большей. Именно в таком порядке взаимно локализуются пигменты, причём наиболее длинноволновые хлорофиллы находятся в реакционных центрах. Обратный переход энергии невозможен.
Однако при этом остаётся неубедительным механизм фотосинтеза в части изменения и роста атомно-молекулярного вещества с производством кислорода путём внутренней ионизации атомного электрона для производства атомного распада-синтеза и роста вещества.
Так в работе приведён анализ современных сведений в области биохимических механизмов фотосинтеза. Показано, что наши знания об этих процессах все еще неполны или ограничены. Это касается следующих вопросов:
— откуда растения берут углерод,
— процессов количественного выделения кислорода при фотосинтезе,
— ассимиляции углекислого газа,
— проявлений С2-фотосинтеза.
Отмечено, что современная трактовка хемиосмотической теории не вполне завершена. При этом единый (по общему признанию) механизм образования АТФ обусловлен разными режимами работы электрон-транспортной цепи фотосинтеза, обозначаемыми как нециклический, циклический и псевдоциклический транспорт электронов. Сделано заключение, что в целом многочисленные и многообразные результаты исследования фотосинтетического процесса все еще недостаточны для того, чтобы овладеть ими для использования в биотехнологических целях.
Здесь происходят более сложные процессы квантовой конденсации энергии фотона путём его поглощения с рождением двух замкнутых вихронов, в объёме которых и начинает действовать энергия поглощённого магнитного монополя фотона. Эта же ошибка происходит и при объяснении механизма ядерного холодного распада-синтеза вещества в части изменения ядерного состава путём ионизации частиц ядра для производства ядерного распада-синтеза.
На примере работы одной ячейки реактора Вачаева А. В. и реактора Кладова А. Ф. продемонстрированы основные процессы ионизации электронов с оболочек атома или частиц с ядерных оболочек атома, приводящие к распаду первичной материи и синтезу вторичной. Что такое распад-синтез конденсированной материи? Это такой тип процессов, при котором первичная энергия извне, затраченная на высвобождение энергии (распад) из вещества материи, окажется намного меньше вторичной энергии, которая высвободится в ходе последующей реакции (синтез). Для осуществления таких процессов потребуется «огонь фитиля», аналогичный началу химического горения или фотоны света для фотосинтеза.
Холодный ядерный возбуждение-распад-синтез происходит через посредство многофотонной ионизации зоной холодной безмассовой плазмы заряженных частиц типа мюонов с внешних оболочек ядер. Суть всех LENR сводится к тому, что при воздействии волноводов магнитных монополей вихронов СВЧ и ИК-фотонов на оболочки атомных ядер (медь, никель и другие), находящиеся в конденсированном состоянии с межядерным расстоянием порядка 10—8 см, с этих оболочек ионизируются частицы типа пи-мезонов (мюоны, ка-мезоны) путём многоквантового слияния магнитных монополей свободных микровихронов фотонов одного знака в оболочках ядер, образования зон холодной безмассовой плазмы (электрической и гравитационной), отталкивания интерференцией одинаковых по знаку-зёрен-потенциалов волноводов магнитных монополей при разрядке, поглощение при торможении свободных микровихронов в электрическом поле атомных ядер с рождением структур ГЭМД.
Почему это возможно?
Ещё в 1948 г. А. Д. Сахаров предложил практическое использование мюонов. Его идея состояла в том, что если образуются мезомолекулы dd μ и dt μ, то почти мгновенно легкие ядра вступят в ядерно-ионную реакцию синтеза.
Размер сферы заряда энергия в форме ГЭММ электрона согласно экспериментальным данным составляет величину около 10—20 см. Так что до планковского предела 10—33 см остаётся ещё десять десятичных порядков, поэтому даже для милиметровых фотонов СВЧ диапазона, которым пользовался Вачаев, размер магнитного монополя свободного микровихрона меньше размера внешней оболочки протона. Отсюда, ионизированные частицы с внешних ядерных оболочек уже способны, как писал А.Д Сахаров, в конденсированных средах (жидкость, металл) осаждаться на соседних ядрах. И этот процесс стал возможным на специальных электроразрядных и ультразвуковых установках производить тепловую, электрическую энергию, а также изменение первичного ядерного состава взаимодействующих веществ. Это реально было уже выполнено на установках А.В.Вачаева «Энергонива-2», А.Ф.Кладова и реакторе С.В.Адаменко. Как установлено экспериментально А. В. Вачаевым при воздействии СВЧ и ИК-фотонов с частотой 30—60 ГГц на воду его реактора происходит многофотонная каскадная ионизация электронов атомов, рождение пар электронов, частиц типа мюонов, мезонов и других ядерных частиц, входящих в состав оболочек атомных ядер. Размер сфер магнитных монополей свободных микровихронов и соответственно ГЭММ в ГЭМД замкнутых микровихронов может достигать размеров гораздо меньших размера атомного ядра даже водорода, т.е. 10—13 см.
Поэтому согласно предложенному автором механизму ХЯС-LENR освободившиеся ядерные резонансные частицы оболочек в конденсированном состоянии почти мгновенно оседают-захватываются на соседние не возбуждённые ядра. Следуют ядерные превращения в другие, снимаются возбуждения ядер и выделяется энергия в форме излучения и кинетического движения продуктов. Фазовое пространство мюона аналогично структуре электрона, но во много раз меньше его по размерам. Частицы типа мюонов в связанном состоянии, как и электроны в атомах, могут входить в состав ядерных оболочек.
До Флейшмана и А. Росси еще в 50-х годах прошлого века Иван Степанович Филимоненко, работая в НПО «Красная звезда» в области космической техники, открыл эффект, подобный А. Росси, выделения тепла в электроде с добавками палладия при электролизе тяжелой воды.
Анатолий Васильевич Вачаев, исключительно вдумчивый экспериментатор, проводил в 1993 году исследования плазменного парогенератора (плазмотрона) и случайно получил большой выход порошка, в составе которого были элементы, чуть ли не всей таблицы Менделеева. Шесть лет исследований позволили создать плазменную установку, которая давала стабильный плазменный факел — холодный плазмоид, при пропускании через который дистиллированной воды или раствора в большом количестве образовывалась суспензия металлических порошков. Удалось получить стабильный пуск и непрерывную работу более двух суток, наработать сотни килограммов порошка различных элементов, получить плавки металлов с необычными свойствами. В 1997 г. в Магнитогорске последовательница А. В. Вачаева, Галина Анатольевна Павлова защитила кандидатскую диссертацию на тему «Разработка основ технологии получения металлов из плазменного состояния водно-минеральных систем». Интересная ситуация сложилась при защите. Комиссия сразу запротестовала, как только услышала, что все элементы получаются из воды. Тогда всю комиссию пригласили на установку и продемонстрировали весь процесс. После этого все проголосовали единогласно. С 1994 года по 2000 г. была спроектирована, изготовлена и отлажена полупромышленная установка «Энергонива-2», предназначенная для изготовления полиметаллических порошков.
В лаборатории А. В. Вачаева была разработана оригинальная технология их переработки. В это же время целенаправленно изучались:
1. трансмутация воды, и веществ в нее добавляемых (сотни экспериментов с различными растворами и суспензиями, которые подвергались плазменному воздействию,
2. преобразование вредных веществ в ценное сырье (использовались сточные воды вредных производств, содержащие органические загрязнения, нефтепродукты и трудно разлагаемые органические соединения),
3. изотопный состав трансмутированных веществ (всегда получали только стабильные изотопы),
4.дезактивация радиоактивных отходов (радиоактивные изотопы превращались в стабильные, но другие),
5. непосредственное преобразование внутренней энергии вещества плазменного факела (плазмоида) в электричество (работа установки под нагрузкой без использования внешнего электропитания.
После теоретического ввода идеи практического использования мюонов, предложенного в 1948 году Сахаровым, А. Д. Альварец Л. экспериментально осуществил эту идею в форме мюонного катализа в 1957 году. Отрицательно заряженный мюон попадая в смесь изотопов водорода, образует мезоатомы внутри электрического поля обычного атома, которые, сталкиваясь затем с молекулами водорода, дейтерия и трития (а также HD, НТ и DT), образуют мезомолекулы — мезомолекулярные ионы.
Самое важное — этот процесс демонстрирует первую элементарную ядерно-ионную реакцию, где положительное ядро атома водорода присоединяет частицу с массой, отрицательный мюон с рождением квазинейтрального тяжёлого тритона, который как и нейтрон способен проникать через поле ядра дейтрона с образованием дейтерий-тритиевого иона.
Глава 1. Структура Атома
Путь познания законов природы начинается с определений законов энергии, законов движения и законов физических полей, которые взаимообратимо связаны между собой. Достоверно установлены следующие законы.
Законы энергии:
— 1. Законы рождения энергии,
— 2. Законы квантовой перезарядки знака энергии для систем с нулевым спином и спином равным 1,
— 3. Законы взаимных переходов энергии для систем с полуцелым спином,
— 4. Законы уничтожения энергии,
— 5. Законы производства энергии,
— 6. Закон сохранения энергии в замкнутых системах,
— 7. Законы квантовой конденсации энергии при преодолении световых и звуковых барьеров,
— 8. Закон превращений энергии при неотъемлемой взаимосвязи триады монополей в вихронах,
— 9. Законы интеграции и дезинтеграции структурированной материи энергией как законы изменения материи,
— 10. Законы действия энергии, её механизмы и инструменты.
И другие.
При этом спин является исполнителем закона сохранения энергии и характеризует состояние энергии в носителе заряда движения. Энергия магнитного (гравитационного) монополя в вихроне может быть положительной и отрицательной. Полное превращение энергии в заряде движения от положительного значения до отрицательного выполняется в системах с целым и нулевым значением спина, а с полуцелым — оно имеет только одно значение, что и порождает взаимные переходы между механическими и электромагнитными вихронами. Спин связан с постоянной Планка, т.е. с квантом действия или квантом момента импульса.
Физический смысл постоянной Планка «h» для электромагнитных волн. Кванту действия поперечного вращения магнитного монополя, который обеспечивает его соответствующим моментом импульса и с определённой частотой в свободном вихроне при разрядке, всегда синхронно по величине заряда противодействует продольно двигающийся изменяющийся электрический монополь, который этим процессом рождает в узле на полволны другой магнитный монополь с противоположным знаком заряда. Повторение этого процесса, но с противоположным знаком, приводит к восстановлению знак заряда первичного монополя в узле на полной длине волны фотона. Происходит полное преобразование заряда энергии с одного знака на противоположный вращением путём переворота спина. Спин такой частицы поэтому и равен одной целой приведённой постоянной Планка.
Свободный вихрон фотонов может находится лишь в четырёх состояниях:
— в свёрнутом состоянии в форме сферы магнитного монополя одного знака заряда энергии с предельным планковским размером около 10 -33 см,
— волновода из электрических зёрен-потенциалов одного знака с соответствующим размером четверти длины волны соответствующей частоты на десять порядков больше размера сферы магнитного монополя,
— в свёрнутом состоянии в форме сферы магнитного монополя с противоположным знаком после перезарядки в узле на полволне,
— волновода из электрических зёрен-потенциалов с противоположным знаком и с соответствующим размером четверти длины волны соответствующей частоты.
Законы движения:
— 1. Закон безынерционного движения,
— 2. Законы инерционного движения,
— 3. Законы вращательного движения,
— 4. Законы электрического движения,
— 5. Законы теплового и звукового движения, ударная волна.
— 6. Законы переноса квантового состояния кластера вещества звуком,
— 7. Законы движения-роста флоры и фауны, фотосинтез, деление клеток.
И другие.
Законы физических полей:
— 1. Законы рождения физических полей,
— 2. Законы рождения пространств-полей от вихревых источников,
— 3. Законы рождения пространств-полей от стационарных источников,
— 4. Законы взаимодействия физических полей.
И другие.
1.1 Атом
Между атомом, определенным Ньютоном, и атомом современной физики существует глубокое различие, почти противоречие. Первый был действительно элементарным, т.е. «неделимый». Это мельчайшая элементарная частица, которую нельзя делить дальше. Для современной физики атом — это целый архитектурный мир, весьма сложный по своему строению, причем процесс открытия составных его частей и нахождения или выявления его внутренних законов еще далеко не окончен.
Атом — это первое, после элементарных частиц и атомных ядер, составное и архитектурно оболочечное соединение, созданное природой по известным законам электростатики и магнитных монополей. Это произведение природы следует отнести к первым продуктам самоорганизации вещественных структур — форма интеграция материи в состоянии покоя. Самые первые продукты — это атомы водорода и гелия, представленные на фото. 1в.
Схема электрических полей атомов водорода и гелия в мгновенном состоянии пульсаций всех их магнитных монополей.
В силу структур внешней оболочки протона и электрона, образовавшийся с помощью холодной безмассовой плазмы атом водорода имеет асимметричное внешнее электрическое поле, которое не полностью скомпенсировано полем электрона. Это обусловлено тем, что частота ядерных монополей ГЭММ на три десятичных порядка выше электронных и соответственно плотность положительных электрических зёрен-потенциалов больше.
Отсюда следуют и его оригинальные свойства, как на ядерном уровне в форме дейтрона и тритона, так и на молекулярном.
Если создать искусственно технически в конденсированных средах-телах смещение нейтральности атома в сторону рождения дырки-лазейки во внешней электронной оболочке для выхода нескомпенсированного холодной безмассовой плазмой кластера положительного поля атомного ядра, то вечные магнитные монополи с частотой 1023 Гц будут непрерывно производить кластеры зёрен-потенциалов, которые можно будет захватывать и преобразовывать в холодное электричество для производства электроэнергии, как это уже было использовано в устройствах Н. Тесла, Э. Грея, Т. Морея, С. Флойда и других. Этот же механизм ответственен за многочисленные контактные явления на границе диэлектриков, металлов, проводников и полупроводников и рождение в них двойного электрического слоя.
Водород занимает особое положение в периодической системе. Его помещают как в 1 так и 7 группе периодической системы. Сходство со щелочными металлами проявляется в образовании положительно заряженного иона (Н+) и в выраженных восстановительных свойствах, низком сродстве к электрону и низкой электроотрицательности. С галогенами объединяет: образование гидрид-иона (Na напоминающего анионы галогенов (K+); как галогены, водород — газ, молекула его двухатомна; атомы галогенов легко замещают водород в органических соединениях. Уникальной особенностью водорода является образование водородных связей. Типичные степени окисления водорода в соединениях — +1 и -1. В молекулярном водороде — 0. В реакциях он проявляет свойства окислителя.
Молекула водорода, состоящая из двух атомов очень устойчива и может распасться только при очень высоких температурах — от 2000 до 5000˚ С. Имеются и два состояния молекулы водорода, в зависимости от взаимной ориентации ядерных спинов — ортоводород и параводород. С другой стороны, имеется атом гелия, ядром которой служит известная в ядерной физике альфа-частица. Внешнее поле настолько симметрично и плотно экранировано структурами двух электронов, что этот атом проявляет чудеса инертности в химических (электрических) взаимодействиях — он полностью пассивен. Эти свойства электронов — создавать полный экран из полей электронов вокруг положительного поля ядра для компенсации его поля (невидимость) в третьем внешнем поле, как творение природы, специально приведены здесь для возможности анализа в последующих разделах рукотворного построения аналогичных структур компенсации заряда массы (без разрушения её структуры и инертности движения) кластеров антигравитационным зарядом для организации технического безынерционного и «невидимого» движения в третьем поле.
Нейтроны и другие нейтральные ядра на определённых гравитационных поясах начинают распад, движение и последующую стабилизацию вблизи твёрдой поверхности Земли. В результате образуются достаточно стабильные положительные ядра и стабильные отрицательные электроны. Стабильность тех и других уже достаточна для охлаждения и рекомбинации друг с другом, с образованием долговременных структур атомно-молекулярного вещества. Атомы химических элементов — это синтезированные составные дискретные микропространства-поля, образованные из двух электростатически противоположно заряженных и концентрически расположенных сферических частей с размерами центральной части ~ ядра 10—13 и нескольких электронов с характеристическим размером 10—10 см, входящих в состав сферических оболочек, находящихся в слое сферического слоя микропространства атома размером-диаметром ~ 10—8 см. Другими словами, из двух свободных частиц с указанными размерами, движущихся навстречу друг к другу с разными, но определенными скоростями, образуется с помощью зоны холодной безмассовой плазмы связанная частица-атом, с размером сферы своего микропространства, совпадающей с соответствующими размерами замкнутых дебройлевских длин волн указанных частиц. Причем по устойчивости атомы слабее ядер более чем 107 раз.
Структура этого нового микропространства, пожалуй, самая сложная из всех известных. Например, известно, что каждый электронный слой атома из K, L, M, N и т.д., начинается с S-оболочки, на которой удерживаются только не более двух электронов (фото.1) и то с противоположными спинами. Каждая последующая оболочка того или иного слоя имеет вполне определенное максимально возможное значение числа электронов, размещенных на ней. Так, например, у атома алюминия (Z = 13) в слое K имеется лишь одна оболочка S с двумя электронами, в слое L — две, S и Р оболочка с 2 и 6-ю электронами соответственно, а в слое М — 2 электрона на S-оболочке и один электрон на Р-оболочке. У атомов с бóльшим порядковым номером верхние слои имеют D и F оболочки, на которых может быть размещено от десяти и более электронов. Такая структура атомного микропространства носит ярко выраженный ячеисто-сферический характер с центром в виде положительно заряженного ядра, окруженного волноводами электронов, зафиксированными в определенных слоях и специальным образом уложенных на поверхности оболочек. Такое размещение электронов обусловлено исключительно полуцелым спином электронов и гибким изменившимся его волноводом, как «спрутом» охватившим часть сферы диаметром с дебройлевской длиной волны этого связанного электрона. Структура атома представлена на фото 1в и фото 2.
У водорода на такой сфере размещён только один электрон. У гелия два электрона размещены на этой сфере таким образом, чтобы центральное поле электрического заряда ядра «видело» максимальную поверхность волноводов этих электронов не только ближайшей поверхности, но и последующих по мере возрастания радиуса. В данном случае это достигается диаметрально противоположным расположением. Когда ядро обладает более значительным зарядом электрического потенциала, то на оболочке большего диаметра появляется больше свободной поверхности для размещения большего количества электронов. Так, например, у алюминия на втором слое, во второй p-оболочке может на поверхности сферы разместится уже 6 электронов. Эти электроны равномерно перекрывают своими волноводами всю поверхность этой оболочки. Поэтому на поверхности оболочек большего диаметра их число резко возрастает. Такая структура атомов возможна лишь в достаточно свободном пространством, какое имеется на поверхности планет и звёзд, но такая структура реально невозможна в глубине нижней мантии Земли, где благодаря очень высокому давлению отсутствует достаточно свободное пространство для образования перехода нейтрона с объёмом соответствующим размеру 10—13 см в объём атома водорода с размером радиуса 10—8 см, но возможно образование мю-атомов водорода, энергия которых может лишь представляться не температурой вращательно-колебательных состояний, а только вращением.
Рассмотренная структура размещения электронов в соответствующих оболочках полностью исключает всякое орбитальное движение электронов в пространстве вокруг ядра. Орбитальное движение электронов, как и движение электрона из возбуждённого состояния в основное состояние атома должно приводить к излучению дебройлевских волн, что наблюдается на практике высвечиванием оптических фотонов, но не наблюдается для атомов, находящихся в основном состоянии.
Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням (слоям) и подуровням (оболочкам), называется электронной конфигурацией этого атома. Так, например, выше рассмотренная конфигурация атома алюминия может быть представлена, как 1s 2 2s 2 2p 6 3s 2 3p.
В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимума потенциальной энергии. Это значит, что сначала заполняются слои, для которых:
— главное квантовое число «n» минимально,
— внутри одного слоя сначала заполняется s- оболочка, затем p- и лишь затем d и т. д.,
— заполнение происходит так, чтобы (n + l) было минимально,
— в пределах одной оболочки электроны располагаются таким образом, чтобы равномерно своими волноводами покрыть всю поверхность этой оболочки не соприкасаясь друг с другом,
— заполнение электронных атомных оболочек выполняется в соответствии с принципом Паули.
Атомные микропространства проявляют весьма характерные свойства. Например, атом водорода способен поглощать или излучать вполне определенные серии фотонов. Это так называемые характеристические серии Бальмера, Пашена, Лаймана и т. д. При поглощении фотонов из этой серии, электрон переходит из 1S состояния в другие, более высоковозбужденные состояния — 2Р или 3S и т. д. У атома гелия возможностей еще больше — у него два электрона 1S 2. Если возбужден только один электрон — 1S2S или 1S3Р и т.д., а если оба — 2S 2 или 2Р3S и т. д. Что это значит? Это значит, что при поглощении энергии электрон переходит в потенциальном поле ядра на более далёкое расстояние от него, которые называются ридберговскими состояниями атомов.
Главный вопрос. Почему при рекомбинации протона с электроном, последние не падают друг на друга, как противоположные заряды, а остаются в противостоянии друг другу на расстоянии 10 —8 см, с образованием устойчивых атомов? Заметим, что после 1989 года было экспериментально Г. Демельтом установлен размер электрона равный около 10 -20 см.
Как было уже показано на примере нейтрона, в процессе его распада, из него уносится энергия 1,29 Мэв в форме частиц (электрона и антинейтрино) и кинетической энергии движения, распределенной между ними. Эта унесенная энергия и является тем барьером противостояния, который электрон благодаря своему стабильному существованию в виде пульсаций сферы размером в 10 -20 см в полусферу волноводов радиусом 2,4х10—10 см размещён в атоме в сферическом слое при нормальных условиях радиусом 10—7—10—8 см, и поэтому не может упасть на поверхность протона. По той причине, что размер дискретного пространства волноводов электрона на три десятичных порядка превосходит внешний волновод любого атомного ядра.
Отсюда, чем меньше «масса» микрочастицы, тем больше средний размер-диаметр его волноводов в полной аналогии со свойствами ЭМВ — чем выше энергия, тем короче длина волны и выше частота вихрона.
Сфера магнитного монополя электрона может «жить» только на поверхности полусферы указанного радиуса. Можно образно сказать, что энергия в вихревых полях атома представлена формой материи холодной безмассовой плазмы в виде динамического слоя сферического пространства из противоположно электрически заряженных зёрен-потенциалов — барьер.
Поэтому дебройлевская полусфера-волновод связанного атомного электрона не может физически «упасть» в центр — она способна лишь окружить его. Эта же причина является основой образования всех атомов таблицы Менделеева. И именно этот факт доказывает путь рождения всех атомных ядер, как и путь протона. К великому сожалению на коллайдерах и на других технических установках пока не научились получать плазму вихронов с энергией, позволяющей получать нейтральные ядра с большим атомным весом, чем масса нейтрона. Это позволило бы проанализировать тип и вид распада, а также возможность синтеза искусственного атома. С другой стороны, известно, что размер мюона соизмерим с внешними оболочками ядер, и поэтому присоединением мюона к ядру (мезоатом) осуществляется его приближение к ядру в 207 раз ближе, чем для электрона.
Атом в целом электрически нейтрален. Механизм электронейтральности поясняется схемой, представленной на фото 2. Ядро атома имеет положительный заряд электрического потенциала и соответственно излучает в 4π вокруг себя поток положительно заряженных зёрен-электропотенциалов. Оболочки из электронов, образованные на расстоянии-радиусах от 0,5 — 15 х 10—8 см, постоянно обновляются магнитными монополями с рождением экранирующего облака-потока отрицательно заряженных зёрен-потенциалов. Внутри атома образуется динамическое равновесное микропространство-поле, заполненное двух знаковым электрическим эфиром — электрическая холодная плазма. Противоположно заряженные потоки зерен-электропотенциалов аннигилируют с образованием силовых линий электрического поля и уничтожением пространства, что приводит к притяжению источников их породивших и фиксации параметров атомного пространства путём рождения и обновления холодной плазмы из безмассовых электрических зёрен-потенциалов с противоположными знаками. Нескомпенсированный электрический эфир может выводится из межатомного пространства при сильной внешней поляризации вещества большими по значению электрическими потенциалами и способен к образованию облака-заряда электрическими зёрнами-потенциалами с последующим его захватом и преобразованием в электрический холодный ток технологиями Н. Тесла, Э. Грея.
Отсюда следует жизнь и существование зарядов электрическим потенциалом в пятой форме, характеризующей наличие атомного пространства в активной аннигилирующей форме, приводящей к наличию в нём двухзнакового эфира зоны холодной безмассовой плазмы из противоположных зёрен-электропотенциалов обоих знаков.
Аналогична по рождению и уничтожению магнитная холодная плазма, которая характеризуется притяжением полюсов стационарных магнитов.
Однако гравитационная холодная безмассовая плазма, порождаемая в основном ядром атома, излучающим более дальнодействующие и однознаковые зёрна-гравпотенциалы, отличается по свойствам. Однополярный гравитационный эфир, излучаемый замкнутыми оболочками атомного ядра, вследствие его высокой плотности выходит не только наружу атома, но и кластера вещества в целом, формируя внешнее гравитационное поле такого атомно-молекулярного вещества. Это поле взаимодействует с центральным полем тяготения Земли и проявляет таким взаимодействием и у атома, и кластера из таких атомов, свойство массы и инертности.
Поэтому снаружи атома внешнее электрическое поле ядра полностью скомпенсировано внешними полями электронов, размещённых на фиксированных оболочках. В связи с этим, у атомов появляется возможность объединяться в кластеры вещества, вплоть до жидкости и твёрдого тела. Однако у металлов внешние валентные электроны атомов почти свободны и образуют в больших массивных кластерах проводников облака свободного отрицательно заряженного электрического эфира, который по технологиям Н. Тесла, Э. Грея, Т. Морея и многих других можно захватывать и преобразовывать специальными схемами в холодное электричество, образуя независимые и автономные источники питания.
Атомы, их атомные ядра и электроны проявляют магнитные свойства, но разные и в разных формах, что позволяет широко применять метод Ядерно-магнитного резонанса — спин ядра в атомах углерода равен нулю, а в атомах водорода полуцелый и т.д., спин электрона полуцелый, а его магнитный момент больше чем у атомных ядер и т. д. Несмотря на то, что магнитные монополи широкого частотного спектра являются строителями атомов и его элементов (ядра и электроны), и при таком производстве «отходами» является его двух знаковый невидимый магнитный эфир, образующий магнитные моменты атомных ядер и электронов, его до сих пор не могут зарегистрировать и проявить. Однако, как и в случае с электрическим эфиром, если использовать известные методы намагничивания некоторых металлов и их сплавов, например, метод Лидскалнина, то удаётся выделить потоки магнитного эфира даже из обычного стержня железа, при этом намагниченный стержень становится постоянным магнитом на достаточно долгое время. А его магнитный эфир из зёрен-потенциалов проявляет себя в виде потоков из полюсов стационарных магнитов и занимает промежуточное свойство по дальнодействию и проникающей способности по сравнению с электрическим и гравитационным эфиром.
Основной вывод — для объяснения механизма образования атомов нет необходимости привлечения механизма орбитального движения атомных электронов.
1.2 Нейтрон, протон, дейтрон, тритон и античастицы
Нейтрон прародитель самого распространенного во Вселенной химического элемента — водорода. Такие свойства объема, который занимает нейтрон, как спин, масса, инертность, плотность, магнитный момент, электрический дипольный момент, распределение плотности электрического заряда и магнитного момента, время жизни и другие — отрицают его как материальную бесструктурную частицу и определяют его как некое сложно-составное вихревое электромагнитное микропространство.
Ф. Вилчек в своей книге, развивая, дополняя и по новому интерпретируя (первый, второй закон Эйнштейна и т.д) идеи ЧТО и ОТО, а также утверждая КХД (принципы её становления одинаковы с принципами КЭД, с той лишь разницей, что в КЭД один электрический заряд, а в КХД их три и те цветные), приходит к выводу — (в пункте 3 позиций из чего устроен мир) — основной компонент реальности оживлен квантовыми процессами.
В данной книге по аналогии — основной компонент реальности оживлён магнитными монополями.
Основной вопрос современности — где расположен и что является главным источником производства нейтронов? Ответ: основными источниками производства нейтронов являются ядра пульсаров-нейтронные звёзды и все ядра светящихся звёзд, а также геологически активных планет типа Земли. Другими источниками, которые порождают такие микропростраства, являются возбужденные (тем или иным методом) более крупные или тяжелые ядра атомов химических элементов.
Возраст жизни нейтронов зависит от силы и формы полей в объемах, где они присутствуют. В обычных условиях на поверхности Земли нейтрон распадается (фото 3), превращаясь в протон.
Кроме протона при распаде появляются электрон и антинейтрино. Кинетическим корпускулярным осколком этой ядерной реакции, уносящим часть энергии, является антинейтрино. В процессе термализации, т.е. охлаждении этих частиц до состояния при, котором происходит их рекомбинация, образуется атом водорода. Период полураспада (10—20 минут) зависит от некоторых внешних условий. Присутствие небольшой примеси протонов и электронов существенно увеличивает их возраст, так как электрические поля этих частиц блокируют процесс разрыхления вихронов внешних оболочек нейтронов, тем самым замедляют их распад. На поверхности ЧСТ, ядра нейтронной звезды, т.е. в очень сильном центральном гравитационном поле нейтроны живут долго без распада, накапливаясь в таком количестве, что образуют достаточно толстую атмосферу. В конечном итоге, этот слой нейтронов, отдаляясь в область слабого гравитационного поля и распадаясь, формирует слой протонов и антипротонов, которые аннигилируют взрывом сверхновой, т.е. происходит одновременный вынужденный взрыв-аннигиляция всей атмосферы.
Нейтрон обладает структурой и внешними-внутренними свойствами. Внешние свойства обнаруживают с помощью различных технических средств и приёмов вычислений системы измерений СИ. К ним относятся внешние поля нейтронов, пространственный размер, спин, заряд массы, магнитный момент, отсутствие электрического заряда, период полураспада, а также взаимодействия нейтронов с атомными ядрами. Внешние поля заряда массы (гравитационные поля) создаются также как и у мюонов, но в отличие от них сформированы суммарным излучением трёх контурных оболочек нейтрона, обладающего набором уже различных частот. Внешнее электрическое поле нейтрона, как и в атоме, полностью уничтожено аннигиляцией противоположных по заряду излучаемых зёрен-электропотенциалов. Кроме того нейтрон и протон имеют очень большие аномальные магнитные моменты, которые в 1,91 и 2,79 раз соответственно больше по абсолютной величине ядерного магнетона, что свидетельствует о значительных токах магнитных монополей внутри их оболочек.
В реальном рассмотрении в основу положена структура, основанная на электромагнитной модели (а не кварковой) нейтронов, разработанной в Стэнфордском университете научной группой во главе с Хофштадтером — 1956 год. Экспериментально исследована внутренняя структура нейтрона была Р. Хофштадтером путём изучения столкновений пучка электронов высоких энергий (2 ГэВ) с нейтронами, входящими в состав дейтрона (Нобелевская премия по физике 1961 г.). Из этой работы следует заключение автора.
ЗАКЛЮЧЕНИЕ
В завершение сказанного уместно еще раз обратиться к ранее затронутой проблеме и поставить вопрос о глубоком и возможном философском значении понятия «элементарная» частица. Как мы видели, протон и нейтрон, которые считались элементарными частицами, представляются очень сложными образованиями. Почти с уверенностью можно сказать, что физики будут последовательно исследовать составные части протона и нейтрона — мезоны одного или другого сорта. Что будет создано на основе этого?
Начиная с 1958 года, подобная модель была развита и дополнена Р. Вильсоном с сотрудниками из Корнельского университета, Г. Шоппером и С. Бергиа с сотрудниками по идеям Фрэзера и Фулко, Намбо и Чу.
«Нейтрон состоит из тяжёлой сердцевины (керна) радиусом ≈ 0,25·10−13 см, с высокой плотностью массы и заряда, которая имеет общий заряд ≈ +0,35 е, и окружающей его относительно разреженной оболочки („мезонной шубы“). На расстоянии от ≈ 0,25·10−13 до ≈ 1,4·10−13 см эта оболочка состоит в основном из виртуальных ρ и π мезонов и обладает общим зарядом ≈ −0,50 е. Дальше расстояния ≈ 2,5·10−13 см от центра простирается оболочка из виртуальных ω и π мезонов, несущих суммарный заряд около +0,15 е.»
Другими словами, из результатов этих изысканий следует, что структура нуклонов также, как и в атоме, состоит из плотного ядра и внешних оболочек. На роль ядра может претендовать нейтральные К-мезоны, а на роль внешних оболочек частицы типа нейтральных и заряженных π-мезонов.
Основная идея, на которой построены эти модели, заключается в том, что протон и нейтрон испускают заряженные π-мезоны, но затем возвращают их назад на свои внешние оболочки. Причём их испускание происходит в состоянии с отличным от нуля моментом количества движения, т.е. они должны вращаться вокруг уже названного ядра нуклонов. Из-за этого и образуются круговые токи, которые порождают аномальные магнитные моменты».
Это подтверждается и результатами работы коллайдера ВЭПП-2000 в Новосибирском Институте ядерной физики. Он был выведен на проектную энергию и достиг порога, после которого столкновения частиц (электрон-позитрон) в нем начинают рождать антибарионы — античастицы протонов и нейтронов, сообщает ученый секретарь института Алексей Васильев:
«Достигнута максимальная проектная энергия коллайдера — 1000 мегаэлектронвольт на пучок, что означает суммарную энергию столкновений 2000 мегаэлектронвольт. Пройден порог энергии 1870 мегаэлектронвольт — порог рождения барион-антибарионных пар. Мы фиксируем до 2 тысяч рождений в секунду в каждой точке (столкновений), они регистрируются».
«Одна из основных задач нового коллайдера — с максимально высокой точностью измерить параметры аннигиляции электрон-позитронной пары в адроны — мезоны и барионы».
«Внутреннее строение протонов и нейтронов до сих пор изучено не до конца. Их строение до сих пор очень плохо известно — как распределен заряд, как распределен момент внутри этих составных частиц. Известно, из чего они состоят, но как это там распределено, известно очень плохо. Этот коллайдер является самым удобным инструментом для изучения».
Американский физик-теоретик Джулиан Швингер в основу магнитной модели материи всех элементарных частиц заложил дуально заряженные частицы магнито-электрические дионы, которые являются, как он считает составной частью и нейтронов. И есть все основания считать, как он полагает, что основа всех элементарных частиц и в том числе нейтронов и протонов состоит из подобных дионов, а не из кварков. Это подтверждается тем, что при аннигиляции нуклона и антинуклона (дезинтеграция материи) зарегистрирован вылет нескольких π-мезонов, а не каких то виртуальных кварков или пентакварков, которые никогда не были экспериментально зарегистрированы.
Антинейтрон был открыт в Национальной лаборатории им. Лоуренса (Беркли) в 1956 году, через год после открытия антипротона.
Практически уже давно освоена технология получения античастиц на мезонных фабриках и коллайдерах. Рождение пар античастиц производится не только с помощью встречных пучков адронов, но и при столкновениях пучков электронов и позитронов с энергией выше 1 Гэв.
Рождение и аннигиляция антинейтрона.
Антинейтрон был получен в процессе реакции перезарядки антипротона на протоне жидководородной пузырьковой камеры. Образовавшийся антинейтрон затем аннигилировал с протоном с образованием пяти заряженных пионов и нескольких других нейтральных мезонов. Знак заряда образовавшихся пионов и их энергия определяются по кривизне траектории пиона в магнитном поле. Нейтральные мезоны распадаются с образованием γ-квантов, поэтому в пузырьковой камере не видны. Зарегистрированная суммарная энергия, уносимая заряженными пионами около> 1500 МэВ, близка к суммарной энергии покоя антинейтрона и протона. Оставшуюся энергию уносят нейтральные мезоны. Необходимо учитывать, что при аннигиляции антинейтрона с протоном суммарный электрический заряд частиц, образовавшихся в результате аннигиляции, равен +1. Поэтому в результате аннигиляции образуется один «лишний» положительно заряженный пион, который затем порождает цепочку последующих распадов. Образующийся в конце цепочки распадов позитрон аннигилирует с электроном среды образуя фотоны с энергией 0,511 Мэв.
Отсюда и следует, что полоса энергии электромагнитных квантов (дебройлевских или клубковых) для образования нуклонов в сингулярных точках на коллайдерах или ЧСТ лежит в пределах 130—500 Мэв. Такие фотоны и отвечают за производство видимой части (0,4% звёзды и галактики) вещества-материи Вселенной.
Трёхконтурные оболочки нейтронов.
Внутренние свойства нейтрона, которые обеспечивают эти внешние свойства — это шесть замкнутых, взаимно противоположных ядерных полярных вихронов и сильно взаимодействующих с определенной частотой, полярностью и поляризацией.
По трём внутренним и внешним оболочкам нейтрона пульсируют замкнутые магнитные монополи ГЭММ, которые обновляют замкнутые контуры, формируя из них внешние поля. Между первой внутренней оболочкой и средней происходит сильное взаимодействие с аннигиляцией противоположных по знаку зерен-электропотенциалов, что приводит к почти полному уничтожению пространства между ними с помощью зоны холодной плазмы (фото 4 третья справа). Поэтому они практически полностью приближены друг к другу на минимально возможное расстояние, равное 1/4 длины волны, и определяют размер нейтронов путём стягивания-притяжения друг к другу источников излучения четверть-волноводов. Равновесное состояние положения источников-сфер волноводов в указанной схеме обеспечивается равенством сил притяжения разных по знаку и величине зарядов энергии, но более близко размещённых, по сравнению с одинаковыми по величине зарядами энергии, но диаметрально противоположными сферами ГЭММ и более удалёнными друг от друга на полволны.
Отсюда следует ещё одна форма жизни и существования зарядов электрическим потенциалом в состоянии динамического равновесия полного взаимного уничтожения пространства контурами-оболочками рождения слоистой холодной безмассовой плазмы и пространства нейтрона.
Гравитационные зёрна-потенциалы этих оболочек имеют одинаковый знак и высокую проницательность, поэтому при обновлении излучаются и выходят за пределы этих контуров, а взаимодействуя с центральным полем Земли проявляют массу нейтрона. Третья, внешняя оболочка нейтрона пульсирует в обе стороны с рождением как положительных зёрен-электропотенциалов, так и отрицательных, проявляя электронейтральность нейтрона в целом и полуцелый спин, как у электрона. В слабом гравитационном поле на поверхности Земли эта свободная внешняя оболочка распадается с рождением стабильных частиц — протона, электрона и с выбросом промежуточного остатка (нейтрино) половины внешней оболочки из зёрен-электропотенциалов без магнитного монополя. Отсюда согласно приведенной структуре нейтрона и его электронейтральности, последний является и античастицей по отношению к себе.
Итак нейтрон — это три вложенных друг в друга оболочки со структурой нейтральных мезонов — три ядерные оболочки (Фото 4), составленные из противоположных по знаку электрического заряда частиц со структурой типа мюонов — сложная центральная интеграция материи-контуров в состоянии покоя. Это основное свойство гравиэлектромагнитных диполей высоких резонансных частот.
Нейтрон не имеет электрического заряда, хотя обладает магнитным и электрическим дипольным моментами, имеет полуцелый спин и массу, которая примерно в 2000 раз больше, чем у электрона. Энергию для обеспечения этих состояний, нейтрон черпает от пульсирующих магнитных монополей в этих шести оболочках. Магнитный момент протона положителен и в полтора раза больше, чем у нейтрона, у которого он отрицателен. Разница в массах-энергиии нейтрона и протона составляет 1,293323 Мэв, которая при распаде нейтрона распределяется между его продуктами. Комптоновская длина волны нуклонов составляет величину 1,3 х 10—13 см, а с учётом разрыхленности внешней оболочки, задающей запирающий слой и полуцелый спин, размер её достигает значения 9,1 х 10 —13 см. Нейтрон легко проникает в ядра химических элементов при любой энергии, вызывает ядерные реакции и способен вызывать деление тяжёлых ядер. Медленные нейтроны, имеющие дебройлевскую длину волны соизмеримую с межатомными расстояниями, служат для использования их в исследовании свойств твёрдых тел.
Большое внимание привлекают на себя осцилляции друг в друга нейтрон-антинейтрон. Осцилляции элементарных частиц — это периодический процесс превращения частиц определённой совокупности друг в друга. Ведутся экспериментальные работы во многих странах по обнаружению увеличения числа антинейтронов в пучке нейтронов из реактора с ростом длины пролёта, а также в потоках космических лучей и в специальных ловушках ультрахолодных нейтронов — это так называемые нейтрон-антинейтронные осцилляции.
Первая и вторая биполярные оболочки, входящие во внутреннюю структуру нейтрона (фото 4), имеют структуру типа К- и π-ноль мезона и созданы квантовым резонансным захватом с последующим концентрическим слиянием разных по частотам четырёх полярных и попарно противоположных замкнутых вихронов. Они вложены друг в друга таким образом, что половины замкнутых контуров из положительных зёрен-потенциалов внутренней закрываются отрицательными зёрнами-потенциалами следующей половины внешней. Центральная сфера показывает свободное пространство, которое будет заполняться центральными оболочками при образовании ядер химических элементов вплоть до ядер кальция. Такая структура нейтрона свойственна ему вначале его появления и долгой жизни в определённых условиях, до начала разрыхления его внешней зарядо-образующей оболочки. Взаимодействие между оболочками — электромагнитное с очень малым радиусом действия 10—16 см.
Нейтрон, как электрически нейтральная частица является одновременно и античастицей по отношению к себе, как и фотон. Мгновенная структура нейтрона с уже разрыхлённой третьей внешней оболочкой, образующей его спин, приведена на фото 5,
где внешняя оболочка находится в состоянии разрыхления и готовится к распаду. Внешняя оболочка нейтрона (антинейтрона) со структурой π-ноль мезона перед распадом при разрыхлении поочерёдно с определённой частотой генерирует положительную или отрицательную полусферическую оболочку с полуцелым спином, т.е. структуру заряженных мезонов. Аналогичны структуры внешних оболочек перед распадом всех атомных нейтральных ядер, появившихся при рождении на поверхности ЧСТ звёзд и планет или в результате мощного электроразряда, или мощного удара при специальной сварке взрывом, или при воздействии магнитных монополей в кавитационном пузырьке и т. д.
Распад нейтрона зависит от внешних условий и возможен с учётом нейтрон-антинейтронных осцилляций не только с образованием протона, но и антипротона.
Распад нейтрона можно рассматривать и как акт ионизации половины внешней оболочки ядра-нейтрона (частицы типа мюона) с испусканием электрона и антинейтрино за счёт внутренних процессов и рождением протона. Половина средней положительной (отрицательной) оболочки нейтрона после распада оголилась и уже не компенсируется полем вылетевшей отрицательной (положительной) оболочки, которая превратилась в электрон (позитрон) распада. Оставшаяся после распада половина внешней оболочки нейтрона вместе со средней положительной превращает его в протон (антипротон) с геометрической формой внешней части представленной на фото 6, слева (справа).
Протон в состоянии покоя.
Подобная полусфера внешней оболочки в совокупности с полусферой нижней положительной части оболочки определяет положительный заряд протона. Энергия, обеспечивающая протон массой, электрическим зарядом, спином, магнитным моментом, размером и другими параметрами, определяется суммарной энергией пяти магнитных монополей ГЭММ, пульсирующих с разной частотой.
Даже две внешние положительные оболочки порождают такой недостаточный положительный (отрицательный) электрический заряд из зёрен-потенциалов на поверхности протона (антипротона), который один электрон (позитрон) в атоме водорода (антиводорода) перекрывает полностью и даже остаётся излишек — образуется атом водорода с достаточно большой энергией сродства к электрону, который способен присоединить ещё один протон с образованием молекулярного иона. Поэтому более стабильна молекула водорода.
Превращения структуры протона в движении при увеличении энергии на ускорителях и коллайдерах.
Вплоть до настоящего времени расчёт увеличения энергии протонов за счёт их разгона в электрическом поле идёт по формулам СТО А. Эйнштейна, т.е. с учётом релятивистского эффекта зависимости массы частицы от скорости. Это грубая ошибка вызвана тем, что в природе нет никакой массы — ни массы покоя, ни релятивисткой массы в СТО. А физические процессы увеличения массы даются лишь на веру математическими формулами Лоренца, не имея под собой никакого физического обоснования, в том числе определения массы, как физической категории. Таким образом, нарушается основной классический принцип познания законов природы на основе экспериментов, а не из математики, ограниченной неполнотой по Геделю. Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью, что приводит к увеличению периода обращения (он пропорционален массе) и синхронизм нарушается. Реально, в природе увеличение внутренней энергии протона идёт по формуле Планка, т.е. путём увеличения частоты магнитного монополя и количества в замкнутых вихронах ГЭММ каждой из его оболочек, а также числом таких оболочек. Поэтому ускоряясь в электрическом поле, протон (фото 6) поэтапно превращается в дейтрон (фото 7), тритон (фото 16) и т.д., а при встречных соударениях с аналогичными продуктами ускоренных антипротонов путём осевой имплозии, переходящей сгустками в центральную имплозию, порождающей многооболочечную структуру ядер (фото 9а) и рождаются антидейтроны, антигелий-3 или антитритий.
Превращения протона в плазмоиде Вачаева
Высокоинтенсивные электроимпульсные короткие (5—50 микросекунд) разряды-процессы в плазмоиде Вачаева реализуют переходы протон-дейтрон-тритон-гелий путём концепции возбуждение-распад-синтез.
Этот же метод позволяет получить из протонов воды почти всю таблицу Менделеева химических элементов. Атомный и ядерный аналог процессов в диапазоне, частот на которых работает реактор Вачаева реализован на 30—60 МГц (производство электроэнергии) и 30—60 ГГц (холодный ядерный распад-синтез атомных ядер химических элементов в стабильном состоянии). Для некоторых элементов получены значения предельных токов разряда (кА /мм2), при которых еще возможна реакция превращения-синтеза структуры атомных ядер: Li = 23,8; Na = 29,5; К = 26,2; Pb = 21,6; Cs=19,1;Cu =44.0; Au = Ag= 43,0; Be =39,2; Ca =78,0; Fe = 47,1; Zn = 42,4;Pt = 40,0; Sb =40,8;Sn = 43,8; Al = 14,25. Продолжительность импульса разряда, которая определяет длину движения кластера воды для достижения синтеза ядер элементов, колеблется от 20…30 до 2000…3000 микросекунд. Вода, являющаяся продуктом реакции после прохождения реактора, имеет следуюцие характеристики и состав: рН — 6,0—6,8; Д2О — тяжёлая вода 0,05%; Т2О — сверхтяжёлая вода 0,05%. Таким образом, наличие дейтронов и тритонов в отработанных водах указывает на механизм их избытка при превращениях протона в движении в плазмоиде на пути четверть волновода вышеуказанных частот и тока в импульсе для реализации синтеза атомных ядер. А также доказывает причастность к таким переходам увеличение заряда энергии магнитного монополя через произведение постоянной Планка на частоту — переход с увеличением энергии в новый более тяжёлый элемент.
Внешний слой оболочки нейтрона (антинейтрона) имеет характерную структуру волноводов и размер 9,1 х 10—13 см, а также определяет спин частицы и его знак электрического заряда — у протона он положительный, у антипротона отрицательный. Один из вихронов половины внешней оболочки в нейтроне при распаде улетает и строит электрон или позитрон, а оставшийся формирует внешнюю оболочку протона или антипротона со структурой мюона.
Подобным же образом, как и на внешней оболочке протона, формируется заряд электрическим положительным потенциалом атомных ядер всех последующих химических элементов.
Аннигиляция протона и его античастицы происходит аналогично, как и в случаях нейтрона и антинейтрона, электрона и позитрона. Таким же образом вскрывается внешняя оболочка (запорный слой со структурой мюона) протона. Затем распадается нижележащая оболочка со структурой π-ноль мезона. Точнее, вылетает ядерный вихрон в поле ядерного остатка, образует промежуточное состояние со структурой π-ноль мезона, которое и распадается на два гамма-кванта. Самыми последними вылетают вихроны, образующие центральную и более высокоэнергетическую (высокочастотную) К-оболочку. В свободном состоянии К-ноль мезоны также распадаются в гамма-кванты через свои промежуточные состояния в форме π-ноль мезонов. Этот процесс — процесс электромагнитной вихревой эксплозии с превращением зарядов покоя двух противоположных частиц в заряды движения, как и в случае аннигиляции электрона и позитрона, т.е. в безмассовую форму энергии движения фотонов — играет самую главную роль в производстве энергии звёзд и планет.
У протона, сформированная оставшимся полярным вихроном часть внешней оболочки с положительными волноводами и открытая часть средней (фото 6) порождает его внешнее положительно заряженное поле, препятствующее вылету вихронов с внутренних оболочек и их возможности последующего распада — это наиболее стабильная частица из числа всех известных.
Благодаря одинаковым структурам внешних оболочек, с параллельным спином, тепловой протон может легко захватывать тепловой нейтрон с образованием дейтрона (фото 7), посредством слияния-объединения близких по частоте связано-замкнутых дебройлевских квантов-вихронов. В оболочках протона и нейтрона магнитные монополи основное время находятся в состоянии вращения и движения на волноводах от центра к поверхности. После пересечения и преобразования вихронами их фазовых объёмов происходит процесс соответствующего слияния и энергетического упорядочивания внутренних оболочек при рождении новой микрочастицы с излучением-сбросом гамма-кванта с энергией 2,2 Мэв. В процессе слияния этих нуклонов суммарный заряд сфер-источников ГЭММ всех оболочек дейтрона увеличивается, размер — уменьшается, частота и число оболочек — изменяются.
Спин и электрический заряд дейтрона равен единице, суммарный заряд энергии сфер-источников ГЭММ всех оболочек увеличивается вдвое, средний диаметр — 4,1 х 10—13 см, а масса в СИ — 1875 Мэв равна удвоенной массе нуклонов без энергии вылетевшего гамма-кванта. Эта ядерная реакция является знаковой (по формуле — охлаждение с образованием вокруг движущихся микрочастиц связано-замкнутых дебройлевских вихронов, ориентация спинов, дрейф, захват-синтез с расширением внутреннего дискретного микропространства на величину, соответствующую энергии 2,2 Мэв, преобразование и снятие возбуждения) и характеризует последовательное взаимодействие быстрых ядерных вихронов — сброс освободившейся энергии в виде вылета свободного биполярного вихрона в форме фотона с энергией 2,2 Мэв. Такие преобразования внутренней структуры промежуточной составной частицы, образованной слиянием одинаковых дебройлевских гравитационных монополей, дополняют свойства ядерных вихронов. Эта ядерная реакция очень ярко демонстрирует пластичность свойств вихронов, оказавшихся в замкнутом пространстве запертым внешней оболочкой с целочисленным спином и структурой волноводов аналогичных заряженным π-мезонам, но связанных с внутренними оболочками. Внутренние вихроны, вылетев в такое пространство после взаимодействия и изменения в общем фазовом объёме, по новому образуют вложенные друг в друга биполярные оболочки, и уже с другим частотным спектром. Эта ядерная реакция экзотермическая — лишняя освободившаяся энергия, как и в случае возбуждённого атома, сбрасывается в виде ядерного гамма-излучения.
При этом надо отметить, что эта ядерная реакция является первой, порождающей ещё стабильный тяжёлый изотоп водорода-дейтрон. Уже вторая реакция антипротона с дейтроном (или наоборот) даёт нестабильный изотоп сверхтяжёлого изотопа водорода — тритон (тритий). С другой стороны, другая подобная реакция — протон плюс антипротон из-за недостаточности в 906 Кэв до пороговой энергии начала ядерной реакции синтеза, приводит лишь к образованию нестабильной промежуточной частицы, которая начинает распадаться, путём последовательной распаковки внешних оболочек со структурой π-ноль мезона и излучением пары соответствующих гамма-квантов. Это связано с тем, что стабильных ядер легче протона в нашей природе на поверхности Земли быть не может. Однако ядерно-ионные реакции с участием положительных и отрицательных тяжёлых ядер, начиная с титана, идут в природе и в некоторых экспериментах. В таких случаях, которые проверены и достоверно установлены, рождается чуть ли не вся таблица элементов из одного элемента меди.
Аналогичные процессы с внутриядерной перестройкой вихронов происходят при внутреннем и внешнем возбуждении вихронов, которое приводит к делению и распаду тяжёлых ядер с образованием и вылетом двух более лёгких ядер и нескольких лёгких элементарных частиц.
Нейтроны с тепловыми энергиями менее 1 Мэв, также легко, как и в случае с протоном, проникают в ядра всех химических элементов с образованием промежуточного возбуждённого ядра. Облучение веществ тепловыми нейтронами позволяет проводить элементный анализ — это так называемый и широко распространенный нейтронно-активационный анализ образцов. А захват нейтронов ядрами других элементов с последующим бета-распадом, известный под названием быстрый R- и медленный S-процесс, происходящий в звёздах, вносят определённый вклад в производство более тяжёлых химических элементов во всей Вселенной.
Таким образом, геометрическую структуру и физические свойства нейтронов и протонов определяют: количество оболочек (фото 4—5— 6) и энергетически-частотный состав внутренних вихронов. А за их стабильность, заряд и спин отвечают внешние оболочки и внутреннее состояние внешнего полярного вихрона в стационарном поле нуклона.
Масса покоя в системе СИ нейтрона и антинейтрона равна 939,57 Мэв. Масса имеет отрицательный знак заряда по сравнению со знаком заряда центрального ядра его поля тяготения Земли и обусловлена излучением обновляемых волноводов из зёрен-гравпотенциалов, формирующих внешнее поле — суммарным зарядом гравитационного потенциала из составляющих оболочки замкнутых частиц со спином ½. Центральная ядерная оболочка (типа К-ноль мезон) с наибольшей кривизной и частотой, обладает большей энергией, чем внешние и даёт больший вклад в индукцию заряда массы покоя нейтрона.
Сродство структуры фотона с оболочечной структурой нейтрона и протона подтверждают экспериментальные исследования рассеяния жестких электронов и гамма-квантов на протонах, которые позволили обнаружить в них схожее пространственное распределение плотности электрического заряда, а также найти электрическую и магнитную поляризуемости их объёма.
Подтверждение указанной структуры нуклонов находим на каждом шагу анализа распадов и взаимодействий, особенно частица-античастица, а также легких и тяжёлых элементарных частиц, следующих из известной таблицы изотопов. Так, например, с участием лептонов — мюонный захват протоном с последующим образованием нейтрона и мюонного нейтрино. Показательным примером, является также распад гиперонов (без участия лептонов) на протоны, нейтроны и π-мезоны.
1.3 Нейтральные ядра
Основным источником производства этих частиц являются ядра ЧСТ нейтронной звезды-пульсаров, а также всех светящихся звёзд, карликов и планет. Другие источники обнаружены во всех генераторах холодного ядерного синтеза (LENR) при ионизации внешних оболочек ядер тяжёлых элементов. Когда атмосфера пульсара уже перенасыщена нейтронами и плотность слоя прилегающего непосредственно к поверхности ядра звезды достигает критического, то спектр нейтронов начинает обогащаться более тяжёлыми нейтральными ядрами. Другой путь производства и накопления нейтральных ядер происходит при вращении ядер звёзд и планет путём индукции механических гипервихронов, состоящего из гравитационного гипермонополя. Для сохранения средней энергии, в связи с тем, что в таких системах, не может произойти перезарядка индуктированного монополя на противоположный, происходит квантовый переход с образованием электромагнитного гипервихрона, квантовые переходы в котором доступны этой системе массы. При его квантовых переходах электрический гипермонополь уже способен сбрасывать излишнюю индуктированную энергию в виде излучения мощных «тяжёлых» магнитных монополей, которые взаимодействуя с плотными слоями нейтронов преобразуют их в нейтральные ядра с весом в две, три или четыре атомные единицы и т. д.
Структура этих частиц — центрально-оболочечная из волноводов зёрен-электропотенциалов и гравпотенциалов, причём каждая оболочка вложена одна в другую таким образом, что над отрицательной полусферой внутренней находится внешняя полусфера положительных волноводов, как и в нейтроне — фото 4.
Каждая оболочка (фото 8) — биполярная со структурой типа π-ноль мезона, составленная из двух противоположных по электрическому знаку замкнутых частиц со спином ½ и по структуре схожих со структурой мюона. Каждая смежная практически полностью приближены друг к другу на минимально возможное расстояние, равное 1/4 длины волны, и определяют размер ядра путём стягивания-притяжения друг к другу источников четверть-волноводов. Равновесное состояние положения источников-сфер волноводов в указанной схеме обеспечивается равенством сил притяжения разных по знаку и величине зарядов энергии, но более близко размещённых, по сравнению с одинаковыми по величине зарядами энергии, но диаметрально противоположными сферами ГЭММ и более удалёнными друг от друга на полволны. Каждая внутренняя оболочка заполняется более энергетическими вихронами, по сравнению с предыдущей внешней, т.е. в терминах СИ, по мере увеличения атомного веса идёт заполнение центральных оболочек более тяжёлыми мезонами типа ипсилон Y (cм. таблицу мезонов). Такой процесс принципиально отличается от заполнения атомных оболочек частицами одного электрического знака (электронов, САП) с полуцелым спином. Таким образом идёт заполнение центра сферы нейтральной частицы вплоть до ядра кальция.
На поверхности ядра звезды нейтральные ядра достаточно стабильны, но по мере заполнения ими атмосферы всего прилегающего пространства, дальнейшего уплотнения и вытеснения по радиусу в наиболее слабые гравитационные пояса звезды, начинается распад внешних оболочек (фото 9) с образованием положительных или отрицательных ядер с помощью ядерно-мезонной плазмы. Это обусловлено тем, что появляется возможность у двух магнитных монополей внешней оболочки в отличие от внутренних оболочек пульсировать в свободное пространство.
Ядерно-мезонная плазма.
После распада внешней оболочки, образующей спин и заряд ядер со структурой положительного мюона (спин ½) или положительного мезона (спин 0), происходит распад внутренней нейтральной оболочки со структурой пи-ноль мезона, которая в зависимости от внешних полей распадается по каналу бета-плюс или бета-минус. При распаде по каналу бета-плюс образуются отрицательно заряженные ядра, которые практически мгновенно же объединяются (синтез ядер) с положительными. Однако аннигиляции двух противоположных ядер, как, в случае, протона и антипротона не происходит, а идут следующие процессы:
— кулоновского ядерно-ионного взаимодействия с образованием заряженных электрически сверхтяжёлых ядерных кластеров с первичным ядром, имеющим целочисленный спин, если реагенты достаточно охлаждены,
— вынужденной каскадной распаковки оболочек ядер с целым и полуцелым спинами с выделением громадной энергии, передаваемой продуктам реакции; эти продукты в форме фрагментов ядерных частиц со структурой пи-мезонов, но с меньшей массой, являются строительным материалом для надстройки оболочек первичных соседних ядер,
— взаимодействия отрицательного ядра с полуцелым спином с положительным ядром с полуцелым спином приводит к образованию стабильного тяжёлого ядра, т.е. идёт ядерная реакция синтеза фрагментов ядер с разными знаками,
— все эти процессы сопровождаются короткими рентгеновскими вспышками аннигиляции (511 Кэв) электронов и позитронов на фоне сплошного тормозного рентгеновского излучения от 15 до 250 Кэв, а также вспышками облаков электрического эфира.
Формула низкоэнергетических ядерных превращений в соответствующей плазме сводится к следующему:
— рождение коллектива «тяжёлых» магнитных монополей макровихронов резонансного диапазона в общем потоке с электрическим эфиром и холодной плазмы в поле нейтральных атомных ядер в нижней мантии,
— начало движения магнитных макромонополей и создание продуктов от резонансных взаимодействий с помощью электронных макровихронов и холодной плазмы,
— локальная частичная обдирка ядер от электронов (или бета распад) в нейтральных атомах, лежащих на пути волновода, удвоенными потенциалами фазовых объёмов макровихронов,
— сопровождение процесса обдирки интенсивным выходом потоков электрического эфира, светового и рентгеновского излучения,
— время жизни активного состояния плазменного кластера ядер-мезонов в одной точке 10—23 с и распространение от неё цепной реакции в 4π со скоростью света,
— распад путём каскадной распаковки волноводами «тяжёлых» магнитных монополей зоной холодной плазмы внешних и внутренних оболочек первичных ядер с выделением энергии и образованием соответствующей линейки лёгких изотопов таблицы Менделеева, а также резонансных ядерных вихронов, образующих фрагменты этих оболочек со структурой пи-мезонов или гравиэлектромагнитных диполей,
— резонансное концентрическое наращивание с помощью этих фрагментов (квазимезонов, по типу матрёшек) внешних оболочек в ядерно-мезонной плазме на первичные ядра без их внешней оболочки (нейтральные ядра) с превращением их в соответствующий спектр тяжёлых ядер, причём, чем больше атомный номер нейтрального ядра, тем больше атомный вес синтезированных ядер,
— синтез в ядерно-мезонной плазме ядер с противоположными знаками с образованием тяжёлых ядер и сверхтяжёлых кластеров разного типа (ядерные молекулы), т.е. ионные ядерные реакции с помощью холодной плазмы,
— вылет потока отработанного и трансформированного СВЧ излучения и мощного потока излучения этой плазмы твёрдого тела,
— охлаждение плазмы и последующая низкоэнергетическая стабилизация созданных изотопов с присоединением электронов, образованием на поверхности планеты атомов, с излучением оптических и других видов снятия возбуждения атома,
— время жизни продуктов низкоэнергетической ядерно-мезонной плазмы различно, колеблется от времени стабилизации и высвечивания возбуждённых атомов, но не превышает нескольких часов.
Другими словами, процесс, приводящий к взаимодействию низкоэнергетических фотонов и фононов высокой интенсивности около 100 Вт/см2 с веществом является имплозия заряда энергии в виде сферы магнитного (гравитационного) монополя микровихрона в поле атома или ядра с помощью волновода из зерен-потенциалов длиной в четверть длины волны. При энергии такого излучения от 0,4 до 0,9 эв с частотой 1—2 х 10 13 Гц и длине волны 1,4 — 3 микрона, сфера заряда энергии имплозией способна проникать даже в атомное ядро имея размер около 10—14 см. Это эффективно отделяет реакции LENR (НЭЯР) от аналогичных реакций Гигантского резонанса с энергией фотонов от 10 до 30 Мэв.
Высокоэнергетическая ядерно-мезонная плазма — это новое состояние материи, в состав которой в активной зоне в мантии вблизи ядра ЧСТ за время менее 10 -23 секунды входят:
— распадающиеся ядра, образующие на мгновение промежуточный кластер плотного облака замкнутых магнитных монополей,
— всё многообразие по частоте возбуждённых и ионизированных замкнутых биполярных ядерных вихронов, образующих внутренние и внешние оболочки этих ядер (квазимезонов — гравиэлектромагнитных диполей),
— смесь в «шубе» из облака электрического эфира и дебройлевских фотонов и мезонов, связанных с ядрами,
— через мгновение-промежуток времени 10—23 сек после взаимодействия и начала образования кластера взаимодействий, в её состав уже входит всё разнообразие микрочастиц, которые создаются движущимися и уже провзаимодействовавшими (согласно выше определённым свойствам) вихронами, в том числе и аннигиляция электронов с позитрона,
— нейтральные ядра, по типу нейтронов, но более тяжёлые,
— лёгкие заряженные ядра, или частицы, в том числе и отрицательные, например, отрицательные мюоны, образовавшиеся от распада первичных,
— более тяжелые по сравнению с первичными, образовавшиеся в результате центрально-концентрического слияния менее энергичных замкнутых ядерных вихронов (квазимезонов) вокруг внешних оболочек первичных ядер,
— сверхтяжёлые кластеры по сравнению с тяжёлыми, образованные кулоновским ионно-ядерным взаимодействием лёгких положительных и тяжёлых отрицательных ядер с образованием ядерных молекул или ядер с кластерной структурой.
Этот процесс идёт наиболее интенсивно, как показывают результаты «выстрелов» С.В.Адаменко, при определённых условиях и в твёрдом теле.
После этого следует движение к поверхности и долгая стабилизация-распад с образованием уже известных ядер химических элементов. Подтверждением такой схемы жизни нейтральных ядер свидетельствуют проблемы, возникающие при полной обдирке от атомных электронов тяжёлых ядер при подготовке пучков тяжёлых многозарядных ионов. В этом случае, после неоднократного разделения пучка в магнитном поле на положительный, отрицательный и нейтральный, последний необходимый пучок опять содержит все эти компоненты. Реакции, которые приводятся в работах А. Ф. Кладова на основе капельной модели ядра, а также в работах А. В. Вачаева, могут идти только как ядерно-ионные, т.е. ядра при распаде могут быть как положительные, так и отрицательные.
К настоящему времени на поверхности Земли не осталось ни одного типа нейтральных ядер атомов химических элементов кроме нейтрона, что свидетельствует об их весьма коротком периоде полураспада на этом гравитационном поясе. Однако имеется от 3000 до 7000 радиоактивных изотопов, до сих пор находящихся в стадии стабилизации, т.е. на пути превращения в стабильные изотопы, путём радиоактивного распада.
Распад тяжёлых нейтральных ядер идёт с образованием как положительных, так и отрицательных ядер. Распад лёгких нейтральных ядер идёт по схеме деления внешней оболочки на два замкнутых вихрона с образованием двух оболочек (одной внутренней и одной внешней, фото 6) волноводов преимущественно положительных потенциалов, образующих его спин и внешнее электрическое поле ядра, запирающее его дальнейший спонтанный распад. Заряд электрическим потенциалом ядра, определяющий число электронов в нейтральном атоме формируется только внешней оболочкой, которая по мере увеличения тяжести ядра меняется на более тяжёлые мезоны. Внутренние оболочки попарно нейтрализованы противоположно заряженными — фото 4 и своей структурой обновления гравитационных контуров определяют лишь суммарную массу частицы, которая, является продуктом взаимодействия противоположных полей атомного ядра и гравитационного поля Земли.
Во внешнем пространстве атома два магнитных монополя сферы двух внешних оболочек формирует положительное электрическое поле, рождённое с частотой накачки на три десятичных порядка больше, чем это делают электроны на атомных оболочках, что и определяет количество присоединённых электронов в нейтральном атоме, чтобы полностью скомпенсировать на ноль своё собственное внешнее поле.
В целом, таким образом сформированная внешняя ядерная оболочка, имеет форму сферы с положительным зарядом электрического потенциала, соответствующим атомному номеру стабильного химического элемента.
Этот процесс очень сложный и заключается в том, чтобы каждое положительное зерно-потенциала было уничтожено отрицательным зерном потенциалом волновода электрона. А так как на двух внешних оболочках ядра вблизи узлов нахождения магнитных монополей размещены более мощные по значению величины и дальнодействию потенциалы, превосходящие подобные противоположные зёрна электронов, то и месторасположение точки их нейтрализации находится вблизи волновода электронов, удалённого на расстояние размера атома.
Появившиеся в результате распадов нейтральных ядер замкнутые вихроны, ранее входившие в состав внешних нейтральных оболочек, во внешнем пространстве, в результате каскадных распадов и взаимодействий с другими частицами на пути к поверхности, образует, в конечном итоге, стабильные электроны. Так образуются атомные ядра и свободные электроны.
1.4 Атомные ядра
Атомные ядра химических элементов, в том числе и протон, образуются при распаде нейтральных ядер в основном по схеме распада нейтрона, кроме LENR. В результате несовместимости энергетического сосуществования нейтральных оболочечных микрочастиц и слабых гравитационных полей, первые распадаются на два основных фрагмента — положительно заряженное, несущее основную массу, ядро и отрицательно заряженная часть его внешней оболочки, формируемая второй замкнутой частицей. Перед распадом идет интенсивный процесс разрыхления внешних оболочек ядер в уже свободное пространство, соответствующее слабым окружающим полям.
Эта внешняя оболочка со структурой, показанной на фото 6, с замкнутым контуром в структуре атомного ядра и является той поверхностью, на которой пара магнитных монополей ГЭММ квантует на волноводе соответствующие зёрна-потенциалов и определяет его заряд электрическим потенциалом. При обновлении этот двойной контур излучается в пространство над ядром, формируя внешнее поле этого заряда электрического потенциала ядра — это и есть электрический эфир с положительным знаком заряда. Таким уже объёмным образом порождается, умножается и аккумулируется строительный материал из электрических зёрен-потенциалов, который в отличие от аккумуляции его в линейном треке фотона, порождает бесконечный объём, а количество этой субстанции пропорционально заряду массы ядра. Такой газоподобный электрический эфир удалось Н. Тесла захватить, преобразовать и отделить в кластере меди от электронов в своём резонансном трансформаторе и частично исследовать.
Так рождается положительный заряд электрическим потенциалом атомного ядра атома химического элемента, бесконечный по объёму электрический эфир в пространстве вокруг атомного ядра, мерилом которого является количество электронов на оболочках атома, противоположные по знаку внешние поля которых его полностью уничтожают.
В поле собственного заряда дальнейший распад остатка ядра замедляется и идет уже по другим схемам распада, как и в случае радиоактивных семейств урана, которые приводят его, наконец, на поверхности планеты к тому или иному стабильному изотопу — процесс ядерной стабилизации, химической релаксации и минерализации, приводящий к образованию 82 стабильных химических элементов в коре, воде и атмосфере на поверхности планеты. Этот процесс конкретно характеризует широко известная таблица распределения радиоактивных изотопов относительно стабильных атомных ядер, т.е. процесс распада по бета-плюс каналу предваряет разрыхление с отрывом частицы с положительной полусферой волноводов, а по каналу бета- минус — отрыв частицы с отрицательной полусферой.
Образовавшиеся стабильные ядра имеют заряд электрического потенциала и спин, формируемые вихронами полусфер двух внешних оболочек — внешней и внутренней. Электрический заряд ядра создаётся волноводами магнитных монополей этих внешних вихронов, с частотой на три десятичных порядка больше, чем у электронных оболочек атомов. Эти оболочки в отличие от внутренних квантуют волноводы не в ограниченной сфере оболочек ядра, а в свободном пространстве, и в таком количестве по поверхности, которое соответствует его внутренним параметрам, создавая заряд ядра, который определяется количеством электронов в нейтральном атоме.
Атомные ядра входят в состав атомов химических элементов, из которых построено всё видимое Мироздание. Всего стабильных и долгоживущих атомных ядер на Земле около 300, а находящихся на пути стабилизации и пополняющих запасы стабильных путём распада по разным оценкам от 3000 до 7000.
Почему столько много радиоактивных нестабильных тяжёлых изотопов? Потому что ядра этих изотопов образовались в результате синтеза тяжёлых противоположно заряженных ядер, т.е. положительно заряженное ядро соединилось с отрицательно заряженным ядром. Образовавшаяся двух ядерная система в результате внутренней перестройки ядерных вихронов медленно переходит в равновесное одно ядерное состояние, с излучением лишних не резонансных вихронов, образующих различные элементарные частицы при вылете из внешних оболочек этого ядра. У тяжёлых трансурановых элементов этот процесс может занять очень длительное время, называемое периодом полураспада.
Источники основного производства атомных ядер находятся вблизи поверхности ядер звёзд и планет — это квантованные кластеры плотной чёрной ядерно-мезонной плазмы, т.е. смеси заряженных атомных ядер, мезонов, мюонов, и распадающихся нейтральных ядер.
Стабильные ядра поверхности Земли имеют внешнее электрическое поле, спин, магнитный момент, определённые заряд массы, заряд электрическим потенциалом, размер, форму и оболочечную структуру. Ядра, имеющие порядковый номер 2, 8, 20, 28, 50, 82 и некоторые другие, обладают сферической формой. Все другие являются сплюснутыми или вытянутыми эллипсоидами. Вытянутых ядер больше сплюснутых. Большинство ядер имеют по несколько изотопов. Некоторые элементы в природе представлены лишь одним стабильным изотопом — это 9 Be, 19 F, 23 Na, 27 Al, 31 P, 45 Sc, 59 Co, 75 As, 89 Y, 93 Nb, 103 Rh, 127 I, 133 Cs, 141 Pr, 159 Tb, 165 Ho, 169 Tm, 197 Au, 209 Bi. Обращает на себя внимание то, что все эти нуклиды имеют нечетные массовые числа в системе СИ и полуцелые спины. Откуда можно сделать вывод о том, что ядра с полуцелым спином более стабильны, что и подтверждается экспериментально.
В основу структуры (фото 9а) атомного ядра положены экспериментальные результаты исследований по строение протона, гиперонов, резонансов, мезонов, экзотических частиц, мезоатомов и эта-ядер. Время жизни резонансов порядка 10—22 сек. Первый нуклонный резонанс был открыт Э. Ферми в 1952 году в реакциях рассеяния π-мезонов на нуклонах, он был назван Δ-изобарой. Резонансы стали активно исследоваться и открываться с развитием техники водородных пузырьковых камер, в которых стало возможно наблюдать продукты распада резонансов: Δ0 → p + π-, Δ++ → p + π+. Экзотическая частица Z (4430) — необычный мезон, не вписывающийся в стандартные рамки. Его существование было известно и раньше, но только сейчас стало окончательно доказано, что это реальная экзотическая частица. Факт, что Z (4430) распадается на ψ» и π−, означает, что это заряженная частица. Тот факт, что он распадается очень быстро, означает, что распад идет за счет сильного взаимодействия. Экзотический мезон Zb и π — мезон. Zb-мезон распадается на π+-мезон и Y-мезон. Y-мезон детектируется по его каналу распада на μ+μ — пару. Состояния этой частицы с энергиями были названы Zb (10610) и Zb (10650) в соответствии с их массами. Исследования сечений взаимодействий пучков электронов области энергий E ~ 9 ГэВ привели к открытию нового семейства частиц. В 1977 году были открыты нейтральные Y-мезоны (ипсилон-мезоны) с массами в диапазоне 9.5 — 11 ГэВ — Y (9460), Y (10580), Y (11020). Несмотря на большую массу Y (9460) имел малую ширину распада Г~53 кэВ, т.е. наблюдалась ситуация аналогичная с J/ψ-мезоном. Y-мезоны являются связанными состояниями из двух частиц с половиной массы Y (9460), т.е. 4700 МэВ. По САП существует и два типа W-бозонов — с электрическим зарядом +1 и −1 (в единицах элементарного заряда); W+ является античастицей для W−. Z-бозон (или Z0) электрически нейтрален и является античастицей сам для себя. Все три частицы очень короткоживущие, со средним временем жизни около 3⋅10−25 секунд. Эти бозоны — тяжеловесы среди элементарных частиц — с массой в 80,4 и 91,2 ГэВ, соответственно. W±- и Z0-частицы почти в 100 раз тяжелее протона и близки к массе атомов рубидия и технеция соответственно. Масса этих бозонов очень важна для понимания слабого взаимодействия, поскольку ограничивает радиус действия слабого взаимодействия. Электромагнитные силы, напротив, имеют бесконечный радиус действия, потому что их бозон-переносчик (фотон) не имеет массы. Все три типа бозонов имеют спин 1. Испускание W+- или W−-бозона может либо повысить, либо понизить электрический заряд испускающей частицы на 1 единицу и изменить спин на 1 единицу. Z0-бозон не может менять ни электрический заряд, ни любой другой заряд — только спин и импульс. Тот факт, что W- и Z-бозоны имеют массу, в то время как фотон массы не имеет, был главным препятствием для развития теории электрослабого взаимодействия.
Эта-мезонными ядрами принято называть сильно связанную систему ƞ-мезона и атомного ядра. Такая система может возникнуть в результате образования медленного ƞ-мезона вокруг ядра при взаимодействии с ним гамма излучения, потоков электронов или заряженных отрицательно π-мезонов высокой энергии. По мнению авторов, в отличие от µ-,π- или К-мезоатомов, где эти частицы находятся на околоядерной оболочке аналогично электронам в обычных атомах и их связь осуществляются с помощью электромагнитного взаимодействия электрического заряда этих мезонов с зарядом ядра, эта-мезонные ядра возникают благодаря сильному ядерному взаимодействию, так как ƞ-мезон не имеет электрического заряда и, находясь в поле ядра, образует квазистабильный уровень в этом поле в результате сильного взаимодействия с ядром.
Согласно реальному представлению все указанные взаимодействия частиц в ядре или около ядра, в том числе, и электроны атомных оболочек вокруг ядра обусловлены стягивающей зоной холодной безмассовой электрической плазмы. В ядре такие взаимодействия определяют ещё и его размер, а в атоме — размер атома. В мезоатомах такое взаимодействие определяет не только относительно стабильную связь системы, но и месторасположение точки источника ГЭММ частицы с опорой её на четверть-волновод из зёрен-потенциалов относительно атомного ядра.
Структура, спин, размер, масса, электрический заряд ядер от протона до размера ядер конца таблицы Менделеева определяется не количеством протонов и нейтронов в ядре, а количеством внутренних оболочек со структурой гравиэлектромагнитных диполей из нейтральных частиц типа π, k и далее до Y-мезонов, составленных попарно из противоположных частиц по структуре похожих на мюоны, положительно и отрицательно заряженных — полусферы волноводов зёрен-потенциалов со структурой гравиэлектромагнитных монополей со спином ½, образованы полярными ядерными вихронами. Эти состояния ядер обеспечиваются энергией соответствующих магнитных монополей, входящих в состав мезонов. Энергия монополя ГЭММ равна произведению постоянной Планка на его частоту пульсаций. Размер диаметра сферической оболочки соответствующего мезона определяется полволной (фото 9а) произведения постоянных Планка и скорости света, делённого на энергию магнитного ионополя. Так для Y-ипсилон мезона этот размер составляет величину ≈ 1,2 х 10—14 см, а его ГЭММ по размеру не превосходит 10—24 см, и который центрально (фото 9а посередине) входит в объём других внешних оболочек ядра.
В этом смысле структура ядер, отдалённо напоминает структуру электронных атомных оболочек. Так, например, дейтрон имеет такой же размер 4,1 фм, что и ядро кальция (4,1х 10 —13 см), т.е. до ядра кальция заряд массы всех предыдущих ядер формировалась за счёт заполнения внутренней центральной сферы протона внутренними биполярными оболочками со структурой π-ноль мезона с помощью соответствующих и более высокоэнергетических (таблица мезонов). Этот немаловажный фактор свидетельствует о смене механизма производства атомных ядер. Последующее увеличение массы и электрического заряда ядра обусловлено уже, как за счёт заполнения внутренней свободной сферы оболочками с размерами менее 10—14 — 10—15 см, так и за счёт перераспределения частот вихронов, формирующих верхние этажи оболочек, в сторону уменьшения их диаметра — увеличения значения частот, например, смена внешних пи-мезонов на k-мезоны и т. д. Таким образом размер ядра с увеличением массы только уменьшается в размерах, в отличие от протон-нейтронной модели, согласно которой размер увеличивается пропорционально корню кубическому из числа массы ядра — размер ядра свинца примерно в шесть раз больше протона. Энергия (масса в системе СИ) атомного ядра будет равна суммарной энергии оболочек всех мезонов, входящих в это ядро. Спин ядра чередуется сменой чётной массы в соответствии с представлениями САП на нечётную к последующему изотопу этого ядра элемента с целочисленного значения на полуцелое. Пульсирующая внешняя оболочка ядер, состоящая из половины внутренней и половины внешней, заполняет электрическим эфиром внешнего поля дискретное пространство в атоме и определяет суммарный заряд поверхности ядра электрическим потенциалом и спин. Именно форма волновода вносит основной вклад в спин ядра и может иметь структуру мюона, как и у протона, для формирования полуцелого спина, так и структуру сферы законченного внешнего слоя электронов для гелия с чётной массой при определении значения целочисленного спина. По сравнению с размерами структуры ядерных магнитных монополей вихронов, пространство волноводов атомного ядра такое же «пустое, как вакуум Вселенной», как и пространство электронных оболочек в атоме. Минимальный размер и максимальная частота монополя вихрона ограничены лишь планковскими пределами. Это подтверждают и эксперименты на Брукхейвенском коллайдере с встречными пучками ядер золота и дейтонов и многими другими. Таким образом, пропадает необходимость применения модели атомного ядра из протонов и нейтронов, не способной объяснить многие ядерные превращения. Нет необходимости привлечения и весьма неубедительного механизма сильных взаимодействий нуклонов в ядре. Они попросту пропадают, а их место занимают очень короткодействующие электромагнитные взаимодействия с помощью безмассовой холодной плазмой между противоположно-чередующимися биполярными оболочками. Механизм сильных взаимодействий в атомных ядрах определяется свойствами холодной безмассовой плазмы, благодаря которой смежные и противоположные по знаку оболочки по радиусу ядра притягиваются друг к другу с наивысшей силой, возникающей при полном уничтожении предыдущего состояния межоболочечного пространства — аннигиляция противоположных по знаку заряда зёрен-электропотенциалов по аналогии механизма формирования пространства атома между ядром и оболочками из электронов. Механизм слабых взаимодействий, отвечающий за различные формы распада ядер, становится более конкретным и определяется, как и в случае атомных внешних оболочек, составом внешних ядерных оболочек.
Вывод: наибольшее практическое значение в будущем в производстве ядерной энергии может играть новый вид вынужденного и управляемого распада ядер — LENR, каскадный распад ядер, обусловленный механизмом «тяжелой» фотоионизации частиц (положительных или отрицательных), составляющих ядерные оболочки, путём дезинтеграции атомных ядер имплозией в них кластера зёрен-потенциалов волноводов из пульсирующего вихревыми полями двуполостного гиперболоида гравиэлектромагнитного диполя с образованием зон холодной безмассовой плазмы в атомных ядрах (распад) вплоть до частиц, составляющих ядерные оболочки, а затем следует быстрый процесс рекомбинации-осаждения (синтез) уже в зонах ядерно-мезонной плазмы с рождением новых элементов.
Внутренняя структура атомных ядер аналогична структуре нейтральных ядер. Вот только внешнее электрическое поле и спин определяется положительными или отрицательными потенциалами внешнего волновода, а также движением по нему соответствующего вихрона, с частотой на три десятичных порядка выше частоты оболочек электронов в атоме. Пассивную массу в СИ индуктируют все ядерные вихроны, пульсирующие по гравитационным замкнутым волноводам оболочек различного радиуса. Магнитный момент, размер и форму определяют количество вихронов, их энергетический состав и взаимодействующие магнитные монополи их волноводов.
Нестабильные атомные ядра, находящиеся на поверхности Земли, имеют различные каналы распада :
— бета- плюс распад,
— бета- минус распад,
— альфа распад,
— спонтанное деление тяжёлых ядер,
— протонный распад,
— излучение нейтронов,
— излучение крупных ядерных кластеров,
— возбуждение ядер снимается излучением гамма-квантов (сброс энергии) с переходом в основное состояние и т. д.
Распад ядер обусловлен несоответствием силы удержания вихрона внешней оболочки несимметричным внешним электрическим полем, которое зависит от спина его внешней оболочки — целый или полуцелый, а также магнитными токами в оболочках ядра и внешними полями окружающими ядро. Если по-каким то причинам нарушился общий синхронный магнитный ток во внешних и внутренних оболочках, то оно начнёт распадаться. Также и магнитный монополь, формирующий внешнюю оболочку, через определённое время движения в ней, находит лазейку и вылетает наружу, приводя ядро в состояние того или иного распада. Такое положение позволяет по новому подойти к производству энергии за счёт распада ядер и вообще к определению слабого взаимодействия.
Названная радиоактивность обусловлена приспособлением (стабилизацией после всех изменений состояний вихронов после синтеза ядер или в новом месте нахождения ядра) всех имеющихся атомных ядер, как микропространств, к совместному сосуществованию с другими имеющимися внутренними и внешними полями и пространствами в данном гравитационном поясе звезды или планеты. И такая стабилизация на Земле происходила уже не раз и не два, а происходит постоянно, так как условия в месте нахождения вновь прибывающих ядер (кратеры вулканов на Земле и фотосфере Солнца) меняются постоянно на пути от ядра звезды (планеты) к её поверхности, затем в атмосфере, что нетрудно проследить на примерах образования ядер водорода, гелия, углерода, кислорода, серы, аргона, радона при их движении от центра планеты. Ещё более нагляден пример отсутствия тяжелых ядер в газовых скоплениях в пространстве космоса — они в слабых гравитационных полях нестабильны, т.е. те ядра, которые стабильны на поверхности Земли, нестабильны в космосе и там отсутствуют. Вот такими стабилизаторами, регулирующими количество и состав стабильных и уже образованных ядер в данном месте, и являются вихроны. Они отвечают за тип и канал распада при данной совокупности окружающих условий. Они способны к делению и образованию ядерных оболочечно-концентрических кластеров (нейтронов, протонов, альфа-частиц, ядер других более лёгких элементов) внутри фазового объёма ядра. Они отвечают за индукцию массы в СИ, электрический заряд, спин и магнитный момент ядер. Они ответственны и за формирование самой большой ядерной плотности вещества. Именно с их помощью становится ясен механизм формирования твёрдости, вязкости и плотности веществ, как функции увеличения плотности размещения и стабилизации (с помощью протекторного магнитного поля) электрических и гравитационных зёрен-потенциалов в единице объёма пространства.
1.5 Электроны
Скажи мне, что такое электрон,
и я объясню тебе всё остальное.
William Thomson
В действительности в этой цитате William Thomson (Baron Kelvin) вместо слова «электрон» стояло слово «электричество». Однако в современном смысле познания ввиду приоритета электрона, как «атома» электричества и массы, как ещё непознанных явлений природы, отдаётся предпочтение указанным фразам. Но в этой книге раскрывается полная суть природы материи электричества и массы, где наименьшим по зарядам электрическим и гравитационным потенциалом-«атомом» являются бесструктурные зерна-потенциалы (положительное и отрицательное) дискретного пространства-поля.
До сих пор физикам все еще не удалось верно определить размеры, структуру электрона и его форму. Известно только (САП), что его радиус по крайней мере меньше, чем одна миллионная радиуса атома, но это неверно. Вместе с тем нельзя считать его точкой, не имеющей размеров. В последнем случае его энергия получается бесконечно большой, что не соответствует действительности. И становится более непонятным установленное в ХХ веке свойство, что все элементарные частицы — это маленькие магнитики, имеющие два противоположных полюса магнита.
В 1928 году Дирак получил новое уравнение электрона, которое повело себя как непокорный джинн, неосторожно выпущенный из бутылки. То, что прочли ученые в этом уравнении, показалось им, мягко выражаясь, недоразумением. Наравне с реально существующим отрицательно заряженным электроном в нем занял равноправное место положительный электрон! «Не парадокс ли это?» — думал невольный виновник этого странного открытия. Дирак вовсе не искал эту частицу. Он даже не подозревал о ее существовании.
Более того, ученый огорошил своих коллег предположением, что все частицы в природе существуют парами, что каждой заряженной частице соответствует своя античастица с такой же массой, но с зарядом противоположного знака. Дирак справедливо решил, что если существует пара для электрона — позитрон (так назвали антиэлектрон), то должна существовать и пара для протона, т.е. антипротон.
После многолетних противоречивых исследований, в середине 50 годов прошлого века, Квантовая электродинамика (КЭД) укрепила свои позиции, когда несколько блестящих теоретиков, таких, как Г. Бете, С. Томонага, Д. Швингер, Р. Фейнман, Ф. Дайсон и другие, дополнили её положениями о том, что фотон реагирует на присутствие или движение электрона.
Понятие спина электрона было введено Д. Уленбеком и С. Гаудсмитом в 1925 году из экспериментов тонкого расщепления спектральных линий атомов. Полуцелое значение спина с двумя возможными ориентациями спина относительно направления импульса было подтверждено П. Дираком в 1928 году. В опытах Штерна и Герлаха была определена величина спинового магнитного момента, которая оказалась равна значению магнетона Бора. В других экспериментах А. Эйнштейна-де Гааза и обратного эффекта Барнетта было установлено двойное превышение для гиромагнитного отношения спина, над ожидаемым из орбитальной теории движения электронов в атомах. Спиновый магнитный момент электрона, как считается в квантовой механике, обусловлен существованием у него собственного механического момента — спина. В САП утверждается, что классическое представление электрона, как вращающийся заряженный объект, не даёт правильного результата для орбитального движения электрона в атоме для гиромагнитного отношения. Кроме того, электрон обладает аномально большим магнитным моментом. Этот магнитный момент электрона был открыт в 1948 году П. Куш и Г. Фоли. Аномальным он назван потому, что его величина несколько превышала ранее принятую величину «нормального» магнитного момента — магнетона Бора. Это открытие вызвало массу проблем, приведших, в том числе, к созданию Д. Швингером, С. Томонагой и Р. Фейнманом новой методики вычислений в квантовой электродинамике (КЭД). Одной из основных задач этой теории является вычисление фактического, т.е. аномального магнитного момента электрона. Теория основана на идее взаимодействия электрона с виртуальными фотонами и дает результаты, весьма близкие к полученным экспериментально?
Современная наука рассматривает электрон как фундаментальную элементарную частицу, не обладающую структурой и размерами. Проведённые эксперименты по столкновению электронов высоких энергий давали значение около 10−17 см.
Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причем магнитный момент делится на нормальную часть и аномальный магнитный момент.
Новые данные о магнитном моменте лептонов высказал и Ж. Лошак на работы по холодному ядерному синтезу группой Л. И. Уруцкоева. Но как и П. Дирак он считает, что магнитный монополь должен иметь постоянный магнитный заряд. Эти данные могут предсказать существование легкого магнитного монополя, являющегося лептоном, который в состоянии играть главную роль в различных эффектах, включая слабые ядерные взаимодействия. С использованием уравнения, симметрии и конуса Пуанкаре он показал, что угловой момент монополя относительно электрического заряда является единственным центром симметрии вращения вокруг фиксированного центра. Это является доказательством вращения монополя вокруг электрического заряда.
В 1989 году Г. Демельту была присуждена Нобелевская премия по физике за измерение магнитного момента электрона с точностью до 13 знаков после запятой. На основе формулы, включающей гиромагнитное отношение, размер составного электрона и его комптоновской длины волны, полученной Дреллом в 1980 году, Dehmelt H. (Г. Демельт) считает, что «электрон может иметь размер и структуру», а его размер из экспериментов по сверхточному определению магнитного момента электрона составляют величину около 10−20 см.
Другие свойства электрона следуют из исследований облака поляризации (полярон), рождающегося при движении электрона внутри кристаллической решётки и обусловленного её взаимодействием с внешним электрическим полем электрона. Сравнить полярон можно лишь с наглядной аналогией, когда «за человеком в солнечный день движется его тень, так за электроном внутри кристаллической решетки движется облако поляризации, образованное его электрическим полем. Встречные атомы, настигнутые облаком, поляризуются им, как бы связываются с электронами невидимыми нитями. Но и электрону эта связь с окружающими его атомами не обходится даром: он становится как бы тяжелее — масса увеличивается в шесть раз. Эту комбинацию электрона с окружающим его состоянием поляризации и назвали поляроном».
Достоверно лишь установлено, что электрические заряды раздельно существуют в двух видах — положительные и отрицательные. При этом разноимённые заряды притягиваются, а одноимённые отталкиваются. Элементарные заряды имеют в обязательном порядке и массу.
При измерениях в системе СИ во внешнем постоянном электрическом поле электрон проявляет отрицательный заряд электрического потенциала и направление спина, а в магнитном постоянном поле — свой вихревой магнитный момент, в поле тяготения Земли — заряд массы.
В квантовой электродинамике (КЭД) понятия знака заряда не существует, а позитрон описывается как электрон, движущийся обратно во времени.
Электроны рождаются в природе, с одной стороны, при образовании заряженных ядер химических элементов, путём распада нейтральных ядер, в процессах бета-распада ядер атомов химических элементов, при распаде нейтрона и других нестабильных элементарных частиц. А с другой стороны, при взаимодействии пороговых фотонов с атомно-молекулярным веществом в различных агрегатных состояниях — фотоэффект и пар — образование.
Свойства структуры электрона, кроме названных явлений, могут также дополнить исследования его свойств при ускорении в коллайдерах и распады короткоживущих элементарных частиц, таких как мюон, а также весьма загадочные явления бета-распада кобальта-60, нейтрона и некоторых других частиц. В этих превращениях ориентированные по спину (поляризованные) внешним магнитным полем распадающиеся ядра излучают в одну сторону больше электронов, чем в другую. Это же явление наблюдается и у античастиц. Эксперименты, выполненные в этом направлении с 1956 по 1964 мировым научным сообществом, показали о наличии у электронов, позитронов и других микрочастиц сложной лево- и право- вращательной структуры.
Все больше и больше новых данных свидетельствует о том, что разобраться в строении элементарных частиц при помощи существующих теорий невозможно. Нужна новая революция. Необходимо идейное перевооружение. И это новое оружие — невидимый заряд энергии или магнитный монополь, как невидимая энергетическая субстанция всего сущего с возрастом жизни, сравнимым со сроком нашей Вселенной.
Итак, на рубеже ХХI века на базе классической и квантовой физики родилась новая физика, хотя её ростки были посажены Д. Кили и Н. Тесла в начале ХХ века. Это отнюдь не значило, что все ранее сделанное учеными отвергалось и заменялось иными взглядами, просто физика росла в глубину дискретного пространства-поля. Действительно, классическая физика, открывшая людям глаза на многие явления природы, ответившая на массу вопросов, стала в тупик перед миром больших скоростей и миром ничтожно малых частичек материи, т.е. зёрен-потенциалов дискретного пространства-поля.
Электрон в покое. Согласно реальному представлению электрон, как замкнутое, а поэтому инертное и стабильное микропространство с массой, электрическим зарядом и спином в СИ, обладает структурой, внешним пульсирующим полем, внутренним зарядом энергии, геометрической формой и двойным последовательным размером в состоянии источник (сфера-пассивное состояние не излучает поля) и поле (четверть волновод дискретного пространства-поле — активное состояние), а также внутренними и внешними физическими свойствами. В таком состоянии источник энергии не излучает внешних полей. Размер его волновода в момент разрядки источника является мерой энергии и зависит от его состояния значения величины заряда энергии (свободное, связанное или в движении) и колеблется в пределах от 0,6 до 1,2 х 10 -10 см. Причём, сфера заряда энергии пульсирует, вращаясь по волноводу, с частотой около 1020 Гц, при котором старый волновод обновляется новым и выталкивается во внешнее пространство, формируя внешнее поле электрона. Поэтому большее время около 10—20 секунды сфера источника переменного диаметра находится в состоянии вращения и излучения при формировании волновода электрона. Излучается магнитный вихревой поток зёрен-потенциалов, который покидает новый формирующийся замкнутый волновод. Его комптоновская длина волны составляет величину 2,4 х 10—10 см. Дебройлевская длина волны электрона в атоме (т.е. размер сферической области дискретного пространства, в которой электрон, будучи связан электрическим полем ядра, уже перестаёт существовать со свойствами свободного электрона) в нормальных условиях рекомбинационного теплового равновесия составляет величину 10—7 — 10—8 см, а в условиях вакуума космоса в областях с температурой близкой к абсолютному нулю приближается к 10—3 — 10—4 см. Таким образом, высоко возбуждённые состояния атомов, имеющие на поверхности Земли очень короткое время жизни, в глубинах космоса практически стабильны. У электрона (позитрона) самая минимально возможная масса-энергия и электрический заряд инертного покоя (511 Кэв и 1,6 х 10- 19 К) в системе СИ обусловлена разрядом пульсаций гравиэлектромагнитного монополя (ГЭММ) в триаду монополей с последовательным излучением квантов потока электрических, гравитационных и магнитных зёрен-потенциалов в его замкнутой и одноконтурной структуры волноводов (фото 10).
В отличие от структуры электромагнитных зёрен свободного магнитного монополя микровихрона фотона, в электроне гравитационный монополь образуется из квантового перехода ГЭММ, а структура его зерен становится электрогравитационной. Эффективный размер фазового объёма спиральных волноводов пульсирующего поля свободного электрона в состоянии покоя составляет величину 1,2 х 10—10 см и в зависимости от скорости движения и состояний связности в атоме может иметь такой размер гораздо меньше указанного вплоть до 0,6 х 10—10 см, а при скоростях на ускорителях почти равной скорости света в 200 раз меньше, т.е. превращается в мюон. Размер же источника электрона ГЭММ в свернутом состоянии сферы может достигать размеров 10 -20 см, а для ядерных частиц с полуцелым спином со структурой ГЭММ, составляющих оболочки атомных ядер типа нейтральных мезонов, на три-пять десятичных порядков меньше указанного. Частота колебаний ГЭММ свободного электрона из свёрнутого состояния сферы-осциллятора в состояние развёрнутого состояния четверти длины волны составляет величину около 1,2 х 1020 Гц. Таким образом в реальном представлении за основу элементарных частиц с полуцелым спином принята концепция Луи де Бройля — частица может существовать последовательно в корпускулярном (сфера) и в форме волны (четверть волновода). На фото 12 приведена реальная картина мгновенного состояния электрона-позитрона после завершения процессов вращения-монополей с конденсацией электрических и гравитационных зерен-потенциалов дискретного пространства-поля частиц.
При высокочастотном обновлении волноводов формируется внешнее поле электрона, представленное на фото 12.
Возбуждённая триада монополей при перезарядке ГЭММ электрона воспроизводит новый контур-волновод, отталкивая предыдущий во внешнее пространство, формируя внешнее поле — электрическое и гравитационное.
Объём этого поля-пространства, как и длина космического трека фотона из-за горизонта, соизмерим с объёмом нашей всей Вселенной. Его стабильное по возрасту жизни микропространство имеет отрицательный (позитрон — положительный) заряд 1,6 х 10—19 Кл в системе СИ, хотя реально в природе не существует таких зарядов, как не существует заряда массы, силы и времени. и т. д.
А существует вихревой электрический монополь — заряд электрическим потенциалом (источник) и вихревой гравитационный монополь — заряд гравитационным потенциалом (источник), которые рождают внешние однополярные кванты-поля — неравномерно по спиралям размещённые на его одноконтурном волноводе-кванте. Указанные на фото 12 однополярные кванты внешнего поля электрона, излучаются последовательно в разные моменты времени.
Форма пульсирующего одноконтурного замкнутого волновода из электропотенциалов и гравпотенцилов определяет каноническую форму для всех лептонов — полуцелый спин. Освободившиеся при разрядке магнитного монополя его зёрна-потенциалы в форме аналогичного однополярного кванта-поля определяют его аномально большой магнитный момент. Все эти данные и легли в основу о механизме рождения спина у электрона под действием магнитного монополя, т.е. вращения при разрядке гравитационного монополя ГЭММ в покое и определяют гиромагнитное отношение электрона.
Внешнее проявление свойств формы и размера волноводов-полей электрона с вращающимся полярным магнитным монополем зависит от скорости его движения и состояния степени свободы (связан в атоме или полностью свободен) — это его спин, электрический заряд, геометрическая структура с определёнными размерами (длина волны) и индуктируемая масса (в терминах системы СИ или СГС), а также бесконечно долгое время жизни, определяемое запасом его внутренней энергии в форме магнитного монополя. Для сравнения заметим, что запаса внутренней энергии магнитного монополя, рождённого при снятии возбуждения атома, достаточно, чтобы фотон мог пролететь всю глубину нашей Вселенной из-за невидимого горизонта, т.е. 1028 см, за 14 миллиардов лет.
Внутренние свойства электрона, ответственные за эти внешние проявления, обусловлены процессами, происходящими в резонансном замкнутом микровихроне, в котором поляризованный магнитный монополь периодически и всегда движется-вкручивается (имплозия осевая) в одном направлении в сторону к центру поверхности полусферы (узел), где исчезая, заряжает гравитационный монополь. Последний источник, разряжаясь индуктирует электрический монополь и два внешних контура волновода электрона. Одно — переменное электрическое поле-волновода (внешняя спираль), которое рождает уже электрический монополь, как источник, что и реанимирует магнитный монополь — индуктирует и периодически заряжает магнитный монополь на удалении от четверти длины волны (пучность) в узел. Другое — волновод вихревого гравитационного поля — внутренняя спираль разрядки гравитационного монополя, показанная на фото 10.
Так образуется замкнутый канонический одноконтурный фазовый объём с полуцелым спином элементарной частицы электрон с массой в покое, т.е. элементарная частица со структурой активированного гравиэлектромагнитного монополя. Указанные вращательно-поступательные движения магнитного и гравитационного зарядов и определяют направление вектора спина, спиновый магнитный момент и собственный механический момент электрона, а их магнитомеханическое отношение есть величина постоянная для стабильных микрочастиц — это основной закон природы. Как только поверхностный контур электрона замкнулся, его оба внутренних заряда стали пульсировать, проявляя направление спина и обновляя-переизлучая контуры, создавая внешние мгновенные вихревые поля частицы — электрическое, гравитационное и магнитное.
Та энергия магнитного монополя, которая в фотоне идет на рождение трека из зёрен-электропотенциалов длиной более 1028 см, в электроне идет на поддержание и обновление внешних полей, т.е. уже объёма с радиусом, равным длине указанного трека фотона. Ответ на вопрос — как долго может длится этот процесс? Гораздо больше, чем время которое тратит фотон, прилетая к нам из-за горизонта, т.е. более четырнадцати миллиардов лет или 4,2 х 10 24—28 лет. А какие потери энергии его заряда движения? Экспериментально установлено, что за время (14 миллиардов лет) движения фотона очень длинного пути из самых окраин Вселенной он «краснеет» всего лишь до z — 7 или 8.
Другими словами, бесструктурной точечной пассивной массы электрон не имеет, а имеет источник-сферу, которая периодически излучает внутренний направленный волновод определённых размеров из зёрен-гравпотенциалов, который и создаёт суммарный заряд гравитационным потенциалом — заряд массы. При обновлении волновода предыдущий излучается, создавая внешнее гравитационное поле, которое взаимодействует с центральным гравитационным полем Земли. Поэтому он инертен и имитирует собственный заряд массы. Точно также внешний направленный волновод из зёрен-электропотенциалов формирует суммарный заряд отрицательного электрического потенциала и направление спина электрона, а также и его внешнее электростатическое поле. При этом следует заметить, что динамизм излучения внешних полей электрона последовательно вихревой разных по значению зёрен-потенциалов — ближе к узлу находятся большие значения и выталкиваются с большей скоростью, а в пучности уменьшаются до нуля. Поэтому они разные и по дальнодействию, и по разному проявляют свои свойства относительно кластерообразования газоподобного электрического эфира, изучением которых и занимался Тесла.
На фото 12 этой схемы указана структура последовательной динамики излучения переменных по величине гравитационного и электрического зарядов, а также их внешних полей. При формировании внешнего аномального магнитного момента вращающийся магнитный монополь не оставляет после себя стационарно установленных волноводов из магнитных зёрен-потенциалов, а формирует магнитный поток из зёрен-магнитопотенциалов. Другими словами, вращаясь вокруг определённой оси магнитный монополь изменяется по величине, создаёт переменный магнитный ток и излучает наружу поток магнитных зёрен-потенциалов, формируя аномально большой магнитный момент. А размер его волновода и определяет входящее и выходящее из него магнитное поле или маленький магнитик с двумя полюсами. Таким образом все элементарные частицы с противоположными электрическими знаками и имеющие массу всегда будут маленькими магнитиками с двумя полюсами.
В отличие от разрядки свободного магнитного монополя, он производит при разрядке волновод из зёрен-гравпотенциалов, а на удалении в четверть длины волны воспроизводит изменение отрицательного электрического вихревого поля соответствующими зёрнами-электропотенциалами, которые регенерируют (спин полуцелый) тот же по знаку магнитный монополь. Этот процесс противоположен процессу, который происходит с магнитным монополем фотона (спин целый). Другими словами, в свободном вихроне фотона зарядка вторичного магнитного монополя происходит через посредство электрического монополя и находится в функции противодействия предыдущему первичного магнитного монополя. В замкнутом вихроне электрона при разрядке сферы гравиэлектромагнитного монополя (ГЭММ, фото 10—12) активируется вся триада монополей. При этом магнитный монополь выполняет роль заряда энергии при перезарядке, а гравитационный монополь — роль заряда энергии в покое. Электрический и гравитационный монополи обновляют внешний замкнутый контур электрона и формируют внешние электрические и гравитационные поля. Магнитный момент порождается магнитным монополем.
Разрядка гравитационного монополя ГЭММ — это вращательное движение по внутренней красной спирали, т.е. движение спирального зелёного тора с увеличивающимся диаметром. Во время этого движения происходит возбуждение электрического монополя, его внешнего волновода и развёртка-установка зёрен-гравпотенциалов на внутреннем волноводе от большего до меньшего значения величины до замыкания внешней поверхности контура электрона. Затем этот контур обновляется новым периодом обновления, а предыдущий последовательно выталкивается наружу и создаёт внешние поля электрона. Высокая частота таких повторяющихся процессов формирует во внешнем пространстве электрическое, гравитационное поле и магнитный момент, как от стационарного источника (но реально таких бесструктурных источников не существует), т.е. индуктируют массу, электрический заряд, спин и магнитный момент электрона в системе СИ.
Спин микрочастицы — это параметр, который характеризует степень (полную или неполную) завершённости квантового перехода вращательной материи при перезарядке носителя индуктированного заряда энергии с одного знака на другой. Этот параметр в целом определяет форму, тип и состояние движения микрочастицы, т.е. образуется открытый самодвижущийся (фотон) или замкнуто-колебательный (электрон) её фазовый объём. Эти признаки и определяют вид движения частицы — кинетический или безынерционный волновой самодвижущийся. Это определение является прямым следствием закона сохранения энергии. В данном случае заряд энергии электрона (магнитный монополь) не меняет знак при квантовом переходе, поэтому оно неполное, а спин полуцелый.
Структура значений потенциалов сферы гравитационного монополя ГЭММ, аналогична магнитному — большей сфере спиральных волноводов из зёрен соответствуют меньшие значения по абсолютной величине, а меньшей — наибольшие значения потенциалов. Поэтому, когда гравитационный монополь разрядился, его наибольшая сфера в этот момент находится в точке волновода с максимальной пучностью, откуда начинал свою зарядку и движение вновь индуктированный с тем же знаком магнитный монополь сферой большего радиуса, а в данный момент заканчивает свою зарядку сферой меньшего диаметра в центре суммарной сферы.
Итак, разряжаясь из центральной точки расположения зелёной сферы (фото 10), гравитационный монополь с полуцелым спином переходит в электромагнитный микровихрон, т.е. создаёт волновод из зёрен-гравпотенциалов (фото 11), воспроизводит волновод из отрицательных электропотенциалов, который регенерирует-заряжает первичный магнитный монополь с тем же знаком.
Обновляемый волновод из зёрен-гравпотенциалов и создаёт внешнее (фото 12) гравитационное поле, которое имитирует заряд гравитационным потенциалом, массу покоя электрона, а также заряд электрическим потенциалом — электрическое поле электрона.
Таким образом, перед моментом исчезновения сферы заряженного до максимума магнитного монополя гравитационный монополь ГЭММ тоже почти зарядился до своего максимального значения, и только в момент разрядки и обновления волновода он имеет вокруг себя максимально возможное центральное внешнее поле, которое способно взаимодействовать с другими окружающими полями, в том числе с атомно-молекулярным веществом и полем тяготения Земли. Эти внешние поля указаны на схеме фото 12, так как имеют лишь мгновенные значения. Таким образом, суммарные внешние локальные поля электрона формируются постоянно обновляемыми волноводами из зёрен-потенциалов, создаваемых поляризованным магнитным и гравитационным монополями, ограниченных зарядкой-разрядкой только в своём замкнутом фазовом объёме.
Рождение электронов и позитронов возможно не только с помощью фотонов в поле атомного ядра. В основном, эти частицы появляются в результате распада атомных и нейтральных ядер в аналогичном поле, в том числе при распаде нейтронов (фото 3). В этом случае электроны образуются в результате последующих распадов внешней оболочки, состоящей из двух противоположно-заряженных замкнутых оболочек-волноводов частиц со структурой типа мюонов, в поле ядра. При распаде нейтрона волновод электрона образует вылетивший соответствующий магнитный монополь внешней оболочки, формирующий частицу типа отрицательного мюона, которая нестабильна и распадается с образованием электрона и антинейтрино, как волновод старой внешней оболочки без магнитного монополя. А так как его частота уже (часть энергии идёт на вылет антинейтрино) существенно меньше материнского вихрона, то он строит новую оболочку, получая при этом скорость, способную преодолеть притяжение протона. Теперь эта оболочка-волновод представляет собой полусферу электрона, соответствующую своей формой новым параметрам полярного дочернего вихрона. При этом, радиус волновода полусферы электрона увеличивается на три десятичных порядка по сравнению с внутренними оболочками протона и составляет величину 1,2 х 10 —10 см.
Бесплатный фрагмент закончился.
Купите книгу, чтобы продолжить чтение.