электронная
22
печатная A5
310
18+
Эзотерическая биология

Бесплатный фрагмент - Эзотерическая биология

Объем:
130 стр.
Возрастное ограничение:
18+
ISBN:
978-5-4474-0941-8
электронная
от 22
печатная A5
от 310

18+

Книга предназначена
для читателей старше 18 лет

Расцвет покрытосеменных — косвенная причина ледникового периода и гибели динозавров

«…последние динозавры вымерли в конце мелового периода (около 65 млн. лет назад)»

(Биологический Энциклопедический Словарь под ред. М. С. Гилярова, статья «Динозавры»)

«Благодаря высокой эволюционной пластичности Цветковые растения в середине мелового периода (примерно 110 млн. лет назад) распространились по всему земному шару»

(БЭС, статья «Цветковые растения»)

Мы, люди, обитаем на поверхности планеты, и кроме того, человеческий век недолог по космическим меркам, поэтому мы в первую очередь испытываем и замечаем изменения температуры атмосферы и поверхности планеты. Температуру на поверхности, помимо солнечного излучения, обуславливает еще ряд других факторов, не солнечного происхождения.

Давайте начнем с того, что ученые-климатологи совершенно справедливо называют причиной всемирного потепления климата «парниковый эффект». Рассмотрим, что он собой представляет.

Я вас спрошу, почему солнечные элементарные частицы, поглощенные элементами на поверхности планеты, все равно рано или поздно начнут двигаться в направлении центра планеты. Да потому что в этом направлении действует суммарное Поле Притяжения планеты. Частицы движутся по поверхности элементов, в промежутках между ними. Когда Солнце освещает данную область поверхности планеты, падающих частиц много. Накопление этих частиц элементами поверхностных слоев планеты приводит к уменьшению величины Центростремительного Поля Притяжения. Поэтому в дневное время и в жаркое время года элементы атмосферы и поверхности планеты нагреваются из-за того, что они меньше отдают накопленные частицы вниз, в направлении центра планеты. Однако в ночное и холодное время года суммарное Поле Притяжения возвращается к своему естественному значению, и поэтому элементы атмосферы и поверхности начинают быстро терять накопленные частицы.

Так вот, чем больше величина суммарного Поля Притяжения химического элемента, тем лучше он поглощает свободные частицы. Отсюда следует, что химические элементы веществ, находящихся при н. у. в твердом агрегатном состоянии, больше накапливают и хуже отдают частицы по сравнению с элементами жидких и газообразных веществ, а элементы жидких больше накапливают и меньше отдают только по сравнению с газообразными веществами. Поэтому элементы атмосферы накапливают меньше свободных частиц, чем элементы в составе жидких и твердых веществ на поверхности планеты. Мы обитаем в окружении атмосферы, поэтому изменения именно степени прогрева атмосферы в наибольшей мере сказываются на температуре наших собственных тел. Так вот, изменения химического состава атмосферы обуславливают изменения степени ее прогрева. Чем больше величина суммарных Полей Притяжения элементов в составе атмосферы, тем больше солнечных частиц суммарно накапливается элементами атмосферы — т. е. тем больше прогревается атмосфера благодаря накопления ею солнечных частиц с Полями Отталкивания. В атмосфере Земли наибольшими суммарными Полями Притяжения обладают элементы углерода и кислорода в составе углекислого газа и органических примесей в атмосфере (например, метана), а также у элементов кислорода и водорода в составе воды. В чистом воздухе в мельчайших долях присутствует достаточно богатый набор химических элементов, обладающих значительными суммарными Полями Притяжения. В загрязненном воздухе процент этих примесей гораздо выше.

Атмосферы других планет несколько отличаются от атмосферы Земли. К примеру, ни на одной из них нет такого большого процентного содержания чистых азота и кислорода. Но в целом необходимо сказать, что атмосферы планет, содержащие много элементов со значительными суммарными Полями Притяжения, накапливают больше солнечных частиц с Полями Отталкивания и хуже «отдают» накапливаемое «тепло» в направлении центра планеты по сравнению с менее плотными атмосферами. Т. е более плотные атмосферы лучше нагреваются в дневное время и в жаркое время года и меньше остывают ночью и в холодное время года. Т. е. в целом более плотные атмосферы имеют более высокую температуру по сравнению с более разреженными.

Итак, замедление охлаждения нагретых днем атмосфер в результате накопления химическими элементами солнечных элементарных частиц — к этому и сводится суть «парникового эффекта». Поэтому я подтверждаю выводы ученых относительно того, что накопление в атмосфере углекислого газа и других соединений, содержащих элементы со значительными суммарными Полями Притяжения, которые выбрасываются в атмосферу в составе автомобильных выхлопов и выбросов промышленных производств, приводят к возрастанию парникового эффекта.

Да, что ни говори, а человеческая техносфера хорошо способствует сохранению «атмосферой «тепла». Но не думаю, что это плохо, ведь иначе бы мы мерзли ночами и в холодные сезоны значительно сильнее, чем сейчас. Хотя много ядовитых выбросов в атмосферу несомненно вредят нашему здоровью (и их надо остерегаться), но в целом то, что люди так много всего жгут, хорошо согревает поверхность планеты (особенно актуально это для населения северных территорий). Можно считать, что при помощи создаваемого человечеством «парникового эффекта» мы предупреждаем оледенение областей планеты, близких приполярным — т. е. высоких широт. Что касается таяния ледников на полюсах, то не думаю, что содержание углекислого газа повысится настолько и температура возрастет так сильно, что полярные шапки действительно по-настоящему начнут таять. Быстрее у человечества закончатся все виды топлива, чем растает лед на полюсах.

Не забывайте также, что похолодание приведет к значительно более серьезным последствиям по сравнению с существующим ущербом от всемирного потепления — и не только для населения северных стран, но и всего земного шара.

В настоящее время проще всего бороться с чрезмерным проявлением парникового эффекта, насаждая деревья.

А теперь поговорим о потеплениях и похолоданиях, имевших место в истории Земли, когда еще антропогенный фактор не был столь силен.

Источником углекислого газа, поступающего в атмосферу любой планеты, можно считать его выброс из недр планеты в ходе вулканической активности. Растения уменьшают процент углекислого газа в атмосфере. Когда на Земле не было растительного царства, чистого кислорода в атмосфере практически не было, а углекислый газ главенствовал. А потому в очень-очень давние времена из-за парникового эффекта климат на Земле был очень жарким. Возможно столь же жарким, как сейчас это имеет место на Венере. Особенно если учитывать, что Земля тогда располагалась ближе к Солнцу. Появление на Земле растений и их повсеместное распространение привело к постепенному повышению в атмосфере уровня чистого кислорода и снижению уровня углекислого газа, что, в свою очередь, вызвало уменьшение парникового эффекта и оледенению приполярных и средних широт.

Затем набрало силу животное царство. Жизнедеятельность животных (дыхание) привела к обратному снижению уровня кислорода и повышению уровня углекислого газа.

Таким образом, именно жизнедеятельность животных привела к таянию ледников и повторному потеплению климата.

Травоядные животные поедали растения. Когда животные истребляли слишком много растений, им становилось нечем питаться. Виды животных начинали вымирать. Хищные виды тоже вымирали — не забывайте, что их численность зависит от численности травоядных. Снижение количества животных снова вело к повышенному размножению растений. В итоге, Царства растений и животных регулировали численность друг друга по принципу обратной связи. Все это прекрасно описано в эволюционном учении Ч. Дарвина. Растения, защищаясь от полного истребления животными, совершенствовали свою способность к размножению. Животные, в свою очередь, приспосабливались к изменяющимся химическим составам растений. В результате, потепления и похолодания случались в истории земли неоднократно.

Помимо всего прочего, «война» растений и животных отражалась на уровне углекислого газа и кислорода в атмосфере, и, как следствие, на смене похолоданий и потеплений в климате планеты В процессе этой борьбы за существование виды как растений, так и животных всячески видоизменялись. Животные «выедали» растительное царство. Растения, стремясь к сохранению себя и своего потомства, совершенствовали свою способность к размножению — т. е. семена. Более приспособленные, совершенные виды лучше выживали, и, естественно, в большем числе распространялись по Земле. К примеру, буйно размножившиеся в начале мелового периода покрытосеменные растения можно рассматривать в качестве венца растительного царства. Цветковые растения столь успешно размножались, что буквально заполонили Землю. Расцвет покрытосеменных совпадает со временем вымирания динозавров и с зарождением млекопитающих. В чем же связь?

К концу мелового периода вымерли многие группы животных — полностью динозавры, частично — двустворчатые моллюски, морские ежи и плеченогие, и еще ряд других групп. Их вымирание связано с расцветом во флоре Земли в начале мелового периода покрытосеменных растений — венца растительного царства. Цветковые растения расселились по всей поверхности суши. Это стало причиной резкого уменьшения в атмосфере процента углекислого газа (и соответствующего подъема уровня кислорода). Углекислый газ, благодаря углероду, входящему в его состав, обладает способностью накапливать (поглощать) солнечные частицы, среди которых преобладают частицы с Полями Отталкивания, и таким путем нагревать атмосферу. Уменьшение в атмосфере процента углекислого газа стало причиной охлаждения атмосферы, и, соответственно, похолодания климата на Земле. Постепенное понижение температуры атмосферы началось вместе с расселением покрытосеменных по поверхности суши. И уже к середине мелового периода все животные, которые были адаптированы к более теплому климату, стали постепенно исчезать с лица Земли. И в первую очередь это относится к хладнокровным животным, трехкамерное сердце которых заставляет смешиваться артериальную кровь (содержащую горячий кислород) с венозной (содержащей охлажденный кислород). Динозавры и другие животные с трехкамерным сердцем вымерли, потому что стали уязвимы для хищников в холодное время суток (ночью), в холодное время года (зимой) и в холодную погоду. Численность таких животных неуклонно сокращалась — так происходило вымирание.

Что касается млекопитающих, предполагаю, что они первоначально зародились ближе всего к полюсам по сравнению с остальными группами животных. Их можно рассматривать как особую группу животных, лучше других приспособленную к активному образу жизни в холодных условиях. На полюсах климат всегда был холоднее по сравнению с другими областями поверхности Земли, даже в жаркие эпохи, предшествовавшие расцвету покрытосеменных. Четырехкамерное сердце млекопитающих позволяло их организму во время каждого сердечного сокращения омываться чисто артериальной кровью, содержащей высокий процент горячего кислорода. Это позволяло млекопитающим не замерзать в холодное время года, суток и в холодную погоду, а также в холодных областях планеты. Поэтому можно предположить, что млекопитающие царствовали в приполярных областях и в эпоху динозавров. Когда же с начала мелового периода началось расселение покрытосеменных, сопровождающееся постепенным похолоданием атмосферы, млекопитающим был дан шанс и они им, конечно, воспользовались. Постепенно хищные млекопитающие, в буквальном смысле, съели всех динозавров (и другие группы неприспособленных «трехкамерных» животных). Скорее всего, хищные млекопитающие, которые в эпоху динозавров, имели, в большинстве своем, небольшие размеры, съедали не самих взрослых особей динозавров, а их яйца и детенышей. В результате, численность динозавров неуклонно сокращалась.

Вы спросите, почему тогда не вымерли крокодилы, черепахи, змеи и ящерицы?

Ну, во-первых, у крокодилов тоже 4-хкамерное сердце, что защищает их от холода.

А во-вторых, сравните размеры пресмыкающихся наших дней и средние размеры большинства динозавров. Мог ли какой-нибудь динозавр, например, все тот же бронтозавр, на ночь вырыть себе норку и переждать в ней ночь?» Не думаю. Не успеет. Да ладно, не успеет. Задача, ведь, не из легких. Да и рыть особо не чем. А вот мелким пресмыкающиеся легче удавалось отыскать или создать себе на ночь убежище, где они и укрывались от ночного холода и хищных млекопитающих. В итоге многие виды мелких пресмыкающихся сохранились на Земле до нашего времени (крокодилы, как уже сказано, вне конкуренции).

Да, конечно, такого глобального похолодания в эпоху мела еще не наблюдалось, как, например, в плейстоцене или голоцене. Однако именно с мела все и началось. Год от года, век от века в атмосфере снижался процент углекислоты. И причина — бурное размножение покрытосеменных. Защищенное семя — какое преимущество в процессе размножения!

Итак, как это ни удивительно, но мы, млекопитающие, обязаны своим существованием покрытосеменным растениям. Не будь их, не было бы и нас, в прямом смысле! Покрытосеменные растения косвенно «истребили» динозавров и дали шанс на более безопасное существование теплокровным животным. Вот так!

Появление и развитие человечества в очередной раз изменило ситуацию на планете, и в атмосфере в том числе. Людям нужны оба царства — и растения, и животные. Мы всячески эксплуатируем и тех, и других. В итоге, с тех пор, как люди стали активно подчинять Земную Природу и вмешиваться в жизнедеятельность животных и растений, климат стал более постоянным — без чрезмерных потеплений и похолоданий. Однако человечество само является ответвлением Животного царства. Поэтому в процессе дыхания производит углекислый газ и потребляет кислород. Поэтому человеческая жизнедеятельность также способствует росту парникового эффекта. А к этому следует добавить такое массированное сжигание топлива. Вот и выходит, что человек — несомненный «виновник» последнего потепления на Земле. Но в отличие от предыдущих времен, растительное царство не может ответить увеличением своей численности — хотя в атмосфере так много нужного для них углекислого газа — так как очень сильно подчинено человеку.

Но не делайте из сказанного вывод, будто человек в действительности «виноват» в потеплении. Человек — это часть Земной Природы и всего лишь стремится выжить на поверхности этой планеты. А это ОЧЕНЬ нелегко.

Вымирание мамонтов

Вас не должно вводить в заблуждение выражение «появление вида». Для того, чтобы оформился вид, требуются сотни тысяч, а порой и миллионы лет (например, человек). Любой вид возникает не на пустом месте, ему всегда предшествует какой-то другой вид.

Точно также не может сразу вымереть целый вид. Вымирание вида происходит постепенно. Это всегда сокращение численности из-за недостатка рождаемости, или высокой смертности детенышей или ослабленных взрослых. Естественным путем вид вымирает, когда становятся неблагоприятными условия, в которых он обитает — слишком холодно, или слишком жарко, или недостаточно пищи.

Никогда также не следует забывать о том, что животным всегда требуется пища. Нет пищи — и вид вымирает.

Мамонты — это вид, приспособленный к северным территориям, где холодные зимы. Тот факт, что мамонты, как вид просуществовали долго, свидетельствует о том, что им хватало пищи — т. е. растительности. Иначе бы они не смогли поддерживать такие огромные размеры. Для справки — мамонты вымерли в конце плейстоцена, начале голоцена.

Покрытосеменные сами «вырыли себе ловушку» на севере. Начиная с мелового периода климат неуклонно становился все холоднее. Из-за этого в приполярных областях (особенно на континентах, где вода не смягчает климат) стали вымерзать растения, в том числе и покрытосеменные.

Видимо, вымерзание растений из-за обледенения почвы в северных областях, где обитали мамонты, как раз и послужило причиной их постепенного вымирания. Их гигантские размеры требовали больше пищи.

Мамонты, по мере дальнейшего похолодания климата и вымерзания растений на территории их обитания, мигрировали все дальше на юг. При этом в ходе эволюции, они «теряли шерсть». Мигрировавшие мамонты стали прародителями слонов.

А вот те группы мамонтов, что остались в северных районах, погибли от недоедания и холода. В то время как более мелкие травоядные, например, такие как северные олени, которым требуется меньше пиши, выжили как вид.

Можно продолжить мысль, и предположить, что все виды крупных травоядных, обитавших в приполярных областях, вымерли из-за недостатка пищи.

Цветковые — это не только деревья, но также и кустарники и травянистые растения. А в приполярных областях и сейчас много карликовых лиственных деревьев. Конечно, мамонты питались не только цветковыми. Папоротники, мхи, лишайники тоже подходят травоядным. Мягкую хвою голосеменных они тоже могли поедать.

Когда-то давно, в начале плейстоцена, в приполярных областях было теплее, что позволяло покрытосеменным расти там более буйно.

Мамонты — это предшественники слонов. Динозавры дольше всего не вымирали на экваторе и в тропических областях. А вот приполярные области первыми стали освобождаться от ига динозавров. Поэтому именно приполярные области в первую очередь стали территориями, где травоядные млекопитающие чувствовали себя свободно. Много пищи и мало динозавров. Именно поэтому в эпохи после мела было так много видов млекопитающих, покрытых шерстью — они жили в приполярных областях.

Так что слоны вторичны по отношению к мамонтам. Обледенение территорий и недостаток пищи заставил их мигрировать в теплые области — в Азию и в Африку.

В последнее время появился целый ряд странных гипотез, объясняющих вымирание мамонтов. Основываясь на фактах обнаружения в ледниках Сибири хорошо сохранившихся тел мамонтов с непереваренной травой в желудках, создатели этих теорий утверждают, что якобы эти мамонты погибли мгновенно. Одни указывают в качестве причины мгновенной гибели мамонтов — поворот Земли в пространстве («кувыркание Земли»), в результате чего Сибирь оказалась на месте северного (или южного?) полюса. Другие говорят, что перевернулась в пространстве не вся Земля, а лишь сместилась земная кора, а само ядро планеты осталось в прежнем положении.

В свою очередь мы не хотим мучить ваше сознание подобного рода оторванными от реальности умозаключениями, и дать находкам мамонтов в Сибири гораздо более простое объяснение.

Представьте себе такую ситуацию. Человек оказался зимней, холодной ночью вдали от жилья. И пускай даже на нем теплая одежда, а в руках теплая и калорийная пища, он очень даже запросто может не дожить до утра — замерзнет. И при этом, когда его найдут, например, откопают под снегом, у него тоже в желудке найдут полупереваренную пищу.

У мамонтов не было жилья, и огонь они не разводили. Обитали в условиях арктической тундры. В холодное время года добывали себе пищу также, как это делают сейчас северные олени, яки, лоси и прочие травоядные зимой — из-под снега. Если ослабленное животное застигнет ночью зимой снежная буря, оно легко может погибнуть от холода. Что говорить о детенышах. Если мамонтенок отстанет в такую погоду от стада и потеряется — то, скорее всего, погибнет.

Вот таким образом можно объяснить нахождение археологами тел мамонтов с травой в желудках.

Рецессивные гены — доминантные, белая раса — черная, женщины — мужчины

А теперь я хочу предложить вашему вниманию статью, в которой будет одновременно переплетено сразу несколько тем: 1) Причины разделения видов на два пола, первоочередность появления полов, наследование половых признаков; 2) Причины зарождения белой и черной рас, первоочередность их появления на Земле; 3) И, наконец, вопрос о доминантных и рецессивных генах.

И давайте начнем с последнего пункта.

Вопрос о том, что такое «память», и «генетическая память», в частности, достаточно сложен. В этой статье мы не станем говорить об этом подробно, и затронем лишь некоторые моменты этой темы.

Ген — это участок хромосомы, кодирующий тот или иной признак организма. Т. е. в гене «записана» информация о данной особенности организма.

Возьмем, к примеру, такой признак, как «цвет кожи». Он кодируется не одной парой аллельных генов, а целым рядом таких пар. Но упрощенно все же можно сказать, что ген, ответственный за темную кожу, богатую меланином, доминирует над геном, на котором «записана» информация о светлой коже, бедной меланином. Т. е. ген темной кожи является доминантным, а ген светлой кожи — рецессивным.

То же самое можно сказать про особенности цвета волос и цвета радужной оболочки. Наследование этих признаков схоже с наследованием цвета кожи. Эти признаки также кодируются не одной парой аллельных генов, а целым рядом таких пар. Но упрощенно можно считать, что ген, отвечающий за светлые волосы является рецессивным, в то время как ген темных волос — доминантный. Также ген светлых глаз (серых, голубых, зеленых) — рецессивный, а ген темных глаз (карих) — доминантный.

Эта информация не новая, ею никого не удивишь. Чем же новым я хочу с вами поделиться? А вот чем.

Доминантный признак как бы «заглушает» рецессивный. Но почему вообще существуют доминантные и рецессивные признаки? Почему, например, светлая и темная кожа не наследуются на равных? И то, каким будет цвет кожи человека не определяется, например, методом «случайного выбора»?

Объяснение следующее.

На мой взгляд, доминантной является более молодая информация, т. е. «записанная» в генах позднее. В то время как рецессивной будет более древняя информация, появившаяся раньше по времени. Т. е. гены, кодирующие светлую кожу, светлые волосы и светлые глаза, появились раньше генов, кодирующих темную кожу, темные волосы и темные глаза.

Для того, чтобы понять как появилась данная гипотеза, следует обратиться к истории развития жизни на Земле.

В статьях, посвященных вымиранию динозавров и мамонтов, уже говорилось о том, что первыми начали освобождаться от господства динозавров приполярные территории. Наибольшую опасность для млекопитающих представляли именно хищные динозавры. Хотя и травоядные пресмыкающиеся составляли конкуренцию для травоядных млекопитающих.

Расцвет Покрытосеменных (Цветковых) растений стал причиной уменьшения в атмосфере Земли углекислоты, и климат на планете постепенно стал охлаждаться. Млекопитающее более приспособлены к холодным условиям, чем пресмыкающиеся. Во-первых, благодаря своему 4-камерному сердцу. А во-вторых, у млекопитающих, в отличие от пресмыкающихся, инкубационный период развития детенышей протекает внутри тела матери. Т. е. детеныши достигают необходимой степени зрелости в тепле материнского организма. Пресмыкающиеся не насиживают яйца, которые откладывают. Они зарывают их в почву или в песок. Насиживать яйца стали птицы, потомки динозавров (данная особенность у них эволюционно развилась из-за необходимости как-то согревать яйца в условиях общего похолодания климата). Когда климат стал холоднее, и почва, соответственно, быстрее и в большей мере стала остывать, яйца динозавров перестали дозревать в необходимой мере. Детеныши внутри яиц, гибли, не вылупляясь, от холода. Это и послужило главной причиной постепенного вымирания динозавров. Численность вылупляющихся детенышей постепенно сокращалась.

Млекопитающие зародились в приполярных территориях, которые стали первыми освобождаться от ига динозавров. Северная Америка и Евразия стали местом все большего расцвета млекопитающих. Дольше всего динозавры сохранялись в экваториальных областях, где климат и до сих пор очень жаркий (но, вероятно, был еще жарче в эпоху динозавров).

Постепенно я подвела вас к очень важному выводу, который мы сейчас сделаем. Человек, как вид, зародился именно на севере — на североамериканском и евразийском континентах. Причем, именно в северных областях этих континентов, в суровых, холодных условиях. И развитие людьми способности добывать огонь стало поворотным этапом в истории человечества. Именно здесь пролегла граница между людьми и животными. Но мы отвлеклись.

Внимание! А теперь сделаем еще более интересный вывод. Люди первой расы, сформировавшейся на Земле, были светлокожие, светловолосые и светлоглазые. Отсутствие меланина в коже, волосах и радужке — это характерный признак людей, живущих в условиях, где земная поверхность суммарно, в течение года получает мало солнечного излучения.

Любое тело, окрашенное в светлые тона, накапливает больше элементарных частиц, чем темное тело. Это особенность химических элементов, образующих тела разной окраски. Подробно об этом мы поговорим в главе, посвященной оптике.

Химические элементы в составе светлой кожи накапливают на своей поверхности больше солнечных частиц (среди которых преобладают частицы с Полями Отталкивания), чем химические элементы в составе темной кожи. Собственно, само вещество «меланин» — это эволюционное приобретение, защита организма от перегрева. Меланин имеет темный цвет. Темные тела хуже накапливают на своей поверхности солнечные частицы. Движущиеся из ионосферы к центру планеты. Т. е. на темной коже оседает меньше нагревающих ее элементарных частиц с Полями Отталкивания. А вот на светлой коже оседает их больше. Поэтому светлая кожа, светлые волосы и светлые глаза обеспечивают дополнительное поступление в организм солнечных частиц, которые нагревают организм. Именно такие, лишенные меланина люди, могли лучше всего приспособиться к холодному климату северных территорий.

Повторю еще раз вывод — первая раса людей на земле была «белой». Следовательно, белая раса людей — наиболее древняя на Земле. Это не повод для шовинистических настроений. У каждой расы свои преимущества и свои недостатки.

В дальнейшем, в ходе эволюции жизни на Земле, климат становился все холоднее. И динозавры начали вымирать уже и в тропических областях. И по мере того, как освобождались территории все дальше от северного полюса, туда мигрировали и люди. Большее количество солнечного излучения привело к появлению в их коже меланина — т. е. их кожа стала смуглой, волосы темными, а глаза карими. Темный цвет кожи, волос и глаз помогал защищать организм от перегрева.

Динозавры не сразу сдали все свои позиции. Многие их популяции продолжали существовать в жарких областях, особенно на экваторе. В связи с этим, люди, мигрировавшие с севера на юг, еще долго сражались с динозаврами. Отголоски этой борьбы находят свое отражение в мифах о драконах, пожиравших людей. Храбрые воины отправлялись с ними на битву. Или драконам (динозаврам) приносили жертвы.

Азиатская раса зародилась как результат миграции на юг белой расы. Черная (негритянская) раса — это азиаты, мигрировавшие еще дальше от северного полюса на юг.

Таким образом, большое содержание меланина в коже, волосах и радужной оболочке — это более молодой признак. Он доминирует над более древним признаком — отсутствием меланина.

Те, кого данные рассуждение не убедили, могут возразить. Они могут сказать — почему вы решили, что доминирует более молодая информация? Может быть наоборот, доминирует более древняя информация? Т. е. сочтут наличие меланина более древним признаком, а его отсутствие — более поздним. Ну что же, для возражения этим людям мы обратимся к истории возникновения половых признаков, а также к особенностям их наследования.

Мы уже вели речь о том, что «ген» — это участок хромосомы, кодирующий какой-либо признак организма. Так вот, половых признаков так много, что их кодирует не один ген, а целая хромосома, которую называют «половой». На половых хромосомах «записаны» не только сведения об органах и системах организма, участвующих в процессе размножения. Здесь же хранится информация о половом поведении. Подчас половое поведение бывает настолько сложным, что это компенсирует редуцированную половую систему. Например, такую ситуацию мы можем наблюдать у птиц. И в результате половая хромосома этого типа особей оказывается длинной, а не укороченной.

Сейчас мы не станем останавливаться на том, как осуществляется хранение информации на хромосомах.

Рассмотрим наследование половых признаков у млекопитающих.

Репродуктивная система самцов (любых классов, не только млекопитающих) сведена к минимуму. У самцов отсутствует основной ее аспект — в их телах нет инкубаторов для созревания детенышей или яиц. У самок анатомо-физиологическая часть репродуктивной системы очень сложна — несравнимо сложнее, чем у самцов. Половое поведение млекопитающих сложное как у самок, так и у самцов. Но у самок все же в большей мере, нежели у самцов. В половом поведении самцов млекопитающих у подавляющего большинства видов практически отсутствует программы поведения, связанные с заботой о детенышах. У самок же. Конечно, эти программы — основа их полового поведения. У самцов в их половых хромосомах хранится очень сложная информация, посвященная конкурентным взаимоотношениям с другими самцами в борьбе за право оплодотворять самок, а также программы поиска и привлечения самок. Именно вся эта информация занимает большую часть Y-хромосомы самцов млекопитающих. Х-хромосома самок млекопитающих наполовину заполнена сведениями об анатомо-физиологических особенностях их репродуктивной системы, а наполовину — программами поведения, связанными с заботой о детенышах и с поиском подходящего самца (несомненно, самки гораздо в меньшей мере посвящают себя поиску самцов, хотя у людей все несколько иначе). Именно поэтому Х-хромосома у млекопитающих, на которой записаны женские половые признаки организма, больше суммарно по длине, нежели Y-хромосома самцов — мужская.

А теперь перейдем непосредственно к рассмотрению особенностей наследования половых признаков у млекопитающих.

Вы никогда не задумывались над тем, почему для того, чтобы организм млекопитающего развивался по женскому типу, требуются две Х-хромосомы? В то время как развитие организма млекопитающего по мужскому типу происходит при наличии в зиготе всего одной Y-хромосомы, при том, что соседняя половая хромосома — не Y, а Х (т. е. женская)? Вам это ни о чем не говорит?

Мне это указывает на то, что Х-хромосома представляет из себя набор рецессивных генов, кодирующих половые признаки, а Y-хромосома — набор доминантных генов. Т. е. Х-хромосома — рецессивная, а Y-хромосома — доминантная. Только в том случае, если обе половые хромосомы — Х, проявится кодируемый ими рецессивный план развития организма млекопитающего — по женскому типу. Если же из двух половых хромосом одна — Х, а другая — Y, то развитие пойдет по мужскому типу. И это указывает на то, что Y-хромосома доминирует над Х-хромосомой.

Наследование половых признаков у млекопитающих напоминает ситуацию с рецессивными и доминантными генами, отвечающими за содержание меланина. Как вы помните, мы для того и обратились к вопросу наследования половых признаков, чтобы доказать, что рецессивные признаки (а также кодирующие их гены) более древние, в то время как доминантные — более молодые.

Полагаю, вы не станете спорить с тем, что женские признаки организма старше, чем мужские. Самки отличаются от самцов способностью к воспроизведению себе подобных. Например, даже у млекопитающих наблюдаются случаи партеногенеза, когда детеныш развивается из неоплодотворенной яйцеклетки. У более древних в эволюционном отношении классов животных такие ситуации возникают гораздо чаще.

Надеюсь, вы признаете факт, что способность воспроизводить себе подобных зародилась раньше, нежели появилась способность избавляться от процесса деторождения, перепоручая его тому ответвлению вида, которое на это способно, т. е. самкам. Все это указывает на то, что женская половая хромосома появилась в истории жизни на Земле раньше, чем мужская половая хромосома.

Однако не у всех классов животных женская половая хромосома должна иметь форму Х. Форма Х вообще присуща тем хромосомам, которые имеют наибольшую длину. Возьмем, к примеру, птиц. Женская половая хромосома у птиц Y, а не Х, в отличие от млекопитающих. А мужская половая хромосома — Х, а не Y. Но Y-хромосома птиц — это именно женская хромосома, она вовсе не аналогична мужской Y-хромосоме млекопитающих. Пусть вас не смущает схожая форма. То же самое можно сказать относительно Х-хромосомы птиц и Х-хромосомы млекопитающих. Х-хромосома птиц — мужская, а Х-хромосома млекопитающих — женская.

Мужскую Х-хромосому птиц называют еще иначе Z-хромосомой, а женскую Y-хромосому — W-хромосомой. «…W- половая хромосома самки в 10 раз меньше Z- половой хромосомы самца».

«…W хромосома схожа на Y хромосому млекопитающих; маленького размера, содержит мало активных генов и много повторяющейся ДНК».

(«Каковы перспективы управления половым соотношением у птиц?» Тагиров М. Т. Институт птицеводства УААН).

Почему же получилось так, что у птиц мужская хромосома оказалась длиннее женской хромосомы? Как уже говорилось, чем длиннее хромосома, тем больше информации она содержит. Но ведь репродуктивная система у самок птиц несравнимо сложнее, чем у самцов. Какая информация насыщает мужскую хромосому птиц, из-за чего она стала такой длинной? Чтобы понять это, следует вспомнить особенности полового поведения птиц. Самцы птиц участвуют в процессе насиживания яиц и выкармливания птенцов наравне с самками. И помимо этого, самцы птиц обычно берут на себя заботы по завоеванию и охране места для гнездования. Самцы многих видов птиц самостоятельно готовят гнезда. А также у них сложные программы поведения соперничества за самку, или привлечения их внимания — взять, к примеру, пение птиц. Что касается самок птиц, то они, во-первых, как все самки не столь обеспокоены поиском самца, по сравнению с тем, как самцы нуждаются в самках. А во-вторых, в вопросе завоевания территории для гнезда и ее охране полагаются на самцов. Т. е. самки птиц в процессе эволюции утратили способность, во-первых подыскивать и охранять территорию, где будут выведены птенцы, а, во-вторых, они перестали заботиться о том, чтобы привлекать к себе самцов. Именно поэтому у птиц женская Y (W) -хромосома короче Х (Z) -хромосомы. И, кроме того, способность перекладывать заботу о завоевании территории и создании пары «на плечи» самцов появилась в эволюционном отношении позже программ поведения, направленных на захват территории и поиск партнера, которые остались у самцов птиц. Таким образом, доминантная хромосома, в которой «урезан» ряд программ полового поведения оказалась женской, а рецессивная, в которой эти программы сохранились — мужской.

Подведем итог и сделаем вывод. Какой-либо признак организма, появившийся в ходе эволюции раньше, будет рецессивным. Любое изменение этого признака, появившееся позже него, будет по отношению к нему доминантным.

Светлая и темная кожа

Всем известно, что люди, проживающие в разных климатических областях, обладают разным цветом кожи. Различные цвета человеческой кожи, также как и разный цвет волос и роговицы, обусловлены разным процентным содержанием в клетках-меланоцитах особого вещества — меланина. Меланин имеет темно-коричневый, почти черный цвет. Как мы уже разбирали, химические элементы темноокрашенных веществ имеют меньшие по величине Поля Притяжения по сравнению со светлоокрашенными элементами того же цвета, что не способствует накоплению элементами такого вещества свободных частиц. Элементы светлоокрашенных веществ, напротив, хорошо накапливают свободные частицы. Накопление частиц с Полями Отталкивания ведет к нагреванию элементов.

Накапливающиеся элементами сводные частицы организм использует:

1) для нагрева элементов тела; 2) в химических реакциях — для разрушения химических связей, где это необходимо; 3) для проведения нервных импульсов (нервный импульс — это и есть свободные частицы, «свет»). Итак, свободные частицы разного качества — это основной участник и исполнитель всех реакций и процессов, протекающих в организме.

Меланоциты расположены не только среди клеток кожи и в роговице, но также и в оболочках внутренних органов. Вот и выходит, что меланин в коже и в оболочках внутренних органов создает своего рода «экран», который не позволяет светлоокрашенным элементам внутри организма накапливать свободные частицы. В то время как светлая кожа, волосы, роговица и оболочки внутренних органов — т. е. содержащие мало меланина — в большей степени способствуют накоплению свободных частиц (и в том числе, оптических фотонов) в химических элементах организма.

Вот и выходит, что низкое содержание меланина в покровных тканях представляет собой приспособление организма к климатическим условиям, характеризующимся недостаточным поступлением солнечного излучения — т. е. к холодному климату. В то время, как повышенное содержание меланина представляет собой вариант приспособленности организмов к прямо противоположным климатическим условиям — к условиям избыточного поступления солнечного излучения — т. е. к жаркому климату.

Цвет пигментов водорослей и фотосинтез.
Почему лучи синей части спектра достигают больших глубин, нежели красной?

Из альгологии, раздела ботаники, посвященному всему, что касается водорослей, мы можем узнать, что водоросли разных отделов способны обитать на разных глубинах водоемов. Так, зеленые водоросли встречаются обычно на глубине в несколько метров. Бурые водоросли могут жить на глубинах до 200 метров. Красные водоросли — до 268 метров.

Там же, в книгах и учебниках по альгологии, вы найдете объяснение этим фактам, устанавливающее взаимосвязь между цветом пигментов в составе клеток водорослей и предельной глубиной обитания. Объяснение примерно следующее.

Спектральные компоненты солнечного света пронизывают воду на разную глубину. Красные лучи проникают лишь в верхние слои, а синие — значительно глубже. Для функционирования хлорофилла необходим красный свет. Именно поэтому зеленые водоросли не могут жить на больших глубинах. В составе клеток бурых водорослей присутствует пигмент, позволяющий осуществлять фотосинтез при желто-зеленом свете. И потому порог обитания этого отдела достигает 200 м. Что касается красных водорослей, то пигмент в их составе использует зеленый и синий цвета, что и позволяет им жить глубже всех.

Но соответствует ли данное объяснение действительности? Давайте попробуем разобраться.

В клетках водорослей отдела Зеленых преобладает пигмент хлорофилл. Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.

В красных водорослях очень много пигмента фикоэритрина, характеризующегося красным цветом. Этот пигмент и придает данному отделу этих растений соответствующий цвет.

В бурых водорослях присутствует пигмент фукоксантин — бурого цвета.

То же самое можно сказать о водорослях других цветов — желто-зеленых, сине-зеленых. В каждом случае цвет определяется каким-то пигментом или их сочетанием.

Теперь о том, что такое пигменты и для чего они нужны клетке.

Пигменты требуются для фотосинтеза. Фотосинтез — это процесс разложения воды и углекислого газа с последующим построением из водорода, углерода и кислорода всевозможных видов органических соединений. Пигменты накапливают солнечную энергию (фотоны солнечного происхождения). Эти фотоны как раз используются для разложения воды и углекислого газа. Сообщение этой энергии — это своего рода точечный нагрев мест соединения элементов в молекулах.

Пигменты накапливают все виды солнечных фотонов, которые достигают Земли и проходят сквозь атмосферу. Ошибкой было бы считать, что пигменты «работают» только с фотонами видимого спектра. Они накапливают также инфракрасные и радио фотоны. Когда световые лучи не заслоняются на своем пути различными плотными и жидкими телами, большее число фотонов в составе этих лучей достигает обогреваемое тело, в данном случае водоросль. Фотоны (энергия) нужны для точечного разогрева. Чем больше глубина водоема, тем меньше энергии достигает, тем больше фотонов поглощается на пути.

Пигменты разного цвета способны задерживать — аккумулировать на себе — разное количество фотонов, приходящих со световыми лучами. И не только приходящих с лучами, но и движущихся диффузно — от атома к атому, от молекулы к молекуле — вниз, под действием притяжения планеты. Фотоны видимого диапазона выступают только в качестве своего рода «маркеров». Эти видимые фотоны указывают нам цвет пигмента. И одновременно сообщают этим особенности Силового Поля этого пигмента. Цвет пигмента нам об этом и «говорит». Т. е. Поле Притяжения преобладает или Поле Отталкивания, и какова величина того или другого. Вот и выходит, в соответствии с этой теорией, что пигменты красного цвета должны иметь наибольшее по величине Поле Притяжения — иначе говоря, наибольшую относительную массу. А все потому, что фотоны красного цвета, как обладающие Полями Отталкивания, сложнее всего удержать в составе элемента — притяжением. Красный цвет вещества как раз нам и указывает на то, что фотоны такого цвета в достаточном количестве накапливаются на поверхности его элементов — не говоря о фотонах всех остальных цветов. Такой способностью — удерживать больше энергии на поверхности — как раз и обладает названный ранее пигмент фикоэритрин.

Что касается пигментов других цветов, то качественно-количественный состав аккумулируемого ими на поверхности солнечного излучения будет несколько иным, нежели у пигментов красного цвета. К примеру, хлорофилл, обладающий зеленой окраской, будет накапливать в своем составе меньше солнечной энергии, чем фикоэритрин. На этот факт нам как раз и указывает его зеленый цвет. Зеленый — комплексный. Он складывается из самых «тяжелых» желтых видимых фотонов и самых «легких» синих. В ходе своего инерционного движения те и другие оказываются в равны условиях. Величина их Силы Инерции равная. И потому они совершенно одинаково подчиняются в ходе своего движения одним и тем же объектам с Полями Притяжения, воздействующим на них своим притяжением. Это означает, что в фотонах синего и желтого цвета, формирующим вкупе зеленый, возникает по отношению к одному и тому же химическому элементу одна и та же по величине Сила Притяжения.

Здесь следует отвлечься и пояснить один важный момент.

Цвет веществ в том виде, в каком он нам знаком по окружающему миру — т. е. как испускание видимых фотонов в ответ на падение (не только видимых фотонов, и не только фотонов, но и других типов элементарных частиц) — явление достаточно уникальное. Оно возможно лишь благодаря тому, что в составе небесного тела, обогреваемого более крупным небесным телом (породившим его), происходит постоянное течение всех этих свободных частиц от периферии к центру. К примеру, наше Солнце испускает частицы. Они достигают атмосферы Земли и движутся вниз — прямыми лучами или диффузно (от элемента к элементу). Диффузно распространяющиеся частицы ученые именуют «электричеством». Все это было сказано для того, чтобы пояснить, почему фотоны разных цветов — синие и желтые обладают одинаковой Силой Инерции. Но Силой Инерции могут обладать лишь движущиеся фотоны. А это означает, что в каждый момент времени по поверхности любого химического элемента в составе освещаемого небесного тела движутся свободные частицы. Они проходят транзитом — от периферии небесного тела к его центру. Т. е. состав поверхностных слоев любого химического элемента постоянно обновляется.

Сказанное совершенно справедливо для фотонов двух других комплексных цветов — фиолетового и оранжевого.

И это еще не все объяснение.

Любой химический элемент устроен точно по образу любого небесного тела. В этом и заключается истинный смысл «планетарной модели атома», а вовсе не в том, что электроны летают по орбитам как планеты вокруг Солнца. Никакие электроны в элементах не летают! Любой химический элемент — это совокупность слоев элементарных частиц — простейших (неделимых) и комплексных. Также как любое небесное тело — это последовательность слоев химических элементов. Т. е. комплексные (нестабильные) элементарные частицы в химических элементах выполняют ту же функцию, что и химические элементы в составе небесных тел. И точно также как в составе небесного тела более тяжелые элементы располагаются ближе к центру, а более легкие — ближе к периферии, Так же и в любом химическом элементе. Ближе к периферии располагаются более тяжелые элементарные частицы. А ближе центру — более тяжелые. Это же правило распространяется на частицы, транзитно проходящие по поверхности элементов. Более тяжелые, чья Сила Инерции меньше, ныряют глубже к центру. А те, что легче и чья Сила Инерции больше, образуют более поверхностные текучие слои. Это означает, что если химический элемент красного цвета, то его верхний слой из фотонов видимого диапазона образован красными фотонами. А под этим слоем располагаются фотоны всех остальных пяти цветов — по нисходящей — оранжевый, желтый, зеленый, синий и фиолетовый.

Если же цвет химического элемента зеленый, то это означает, что верхний слой его видимых фотонов представлен фотонами, дающими зеленый цвет. А вот слоев желтого, оранжевого и красного цветов у него нет или практически нет.

Повторим — более тяжелые химические элементы обладают способностью удерживать более легкие элементарные частицы — красного цвета, например.

Таким образом, не совсем корректно говорить, что для фотосинтеза одних водорослей нужна одна цветовая гамма, а для фотосинтеза других — другая. Точнее сказать, взаимосвязь между цветом пигментов и предельной глубиной обитания прослежена верно. Однако объяснение верно не до конца. Энергия, требующаяся водорослям для фотосинтеза, состоит не только из видимых фотонов. Не следует забывать про ИК и радио фотоны, а также УФ. Все эти виды частиц (фотонов) требуются и используются растениями при фотосинтезе. А вовсе не так — хлорофиллу нужные преимущественно красные видимые фотоны, фукоксантину — желтые и образующие зеленый цвет, а фикоэритрину — синие и зеленые. Вовсе нет.

Ученые совершенно верно установили факт, что световые лучи синего и зеленого цветов способны достигать в большем количественном составе больших глубин, нежели желтые лучи, и тем более — красные. Причина все та же — разная по величине Сила Инерции фотонов.

Среди частиц Физического Плана, как известно, в состоянии покоя только у красных есть Поле Отталкивания. У желтых и синих вне состояния движения — Поле Притяжения. Поэтому инерционное движение только у красных может длиться бесконечно. Желтые и синие с течением времени останавливаются. И чем меньше Сила Инерции, тем быстрее произойдет остановка. Т. е. световой поток желтого цвета тормозится медленнее зеленого, а зеленый — не так быстро, как синего. Однако, как известно, в естественных условиях монохроматического света не бывает. В световом луче смешаны частицы разного качества — разных подуровней Физического Плана и различных цветов. И в таком смешанном световом луче частицы Ян поддерживают инерционное движение частиц Инь. А частицы Инь, соответственно, тормозят Ян. Большой процент частиц какого-то одного качества несомненно сказывается на общей скорости светового потока и на средней величине Силы Инерции.

Бесплатный фрагмент закончился.
Купите книгу, чтобы продолжить чтение.
электронная
от 22
печатная A5
от 310